Dr. KOTHANDARAMAN Ramanujam

Annamalai & Santi Rajendran Chair Professor

Professor, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, email: rkraman@zmail.iitm.ac.in; rkraman@smail.iitm.ac.in

Phone: 044 2257 4249 and 9444231700; https://chem.iitm.ac.in/faculty/kothandaraman/

Career Summary: Materials electrochemist focusing on redox chemistries for flow batteries, alkali-metal ion batteries, and electrochemical N₂/CO₂ reduction. Since 2011, secured over \$5.8M USD in external research and consulting support, published ~180 journal articles, and filed 19+ patents. In parallel, I have built strong international networks across academia, industry, and government (India, Australia, South Africa, South Korea, Taiwan, USA), translating lab research into deployed technologies (kW-scale flow batteries with ONGC, Archean Chemicals, High Energy Batteries) and strengthening the electrochemistry community via society leadership, student chapter mentoring, and international conferences. I have mentored 40 graduate (PhD) students (24 graduated, 20 on roll) and many M.Sc students.

Professional Appointments:

July 2021- current: Professor, Dept. Chemistry, IIT Madras, Chennai, India

June 2016 – June 2021: Associate Professor, Dept. Chemistry, IIT Madras, Chennai, India

March 2011 – June 2016: Assistant Professor, IIT Madras, Chennai, India

March 2009 – Feb 2011: Research Associate, National Research Council of Canada, Ottawa (Supervisor: Dr Christina Bock)

March 2007 – Feb 2009: Post Doctoral Researcher, Dept. Chemical Engineering, Michigan State University, East Lansing, USA (Supervisor: Prof Scott Calabrese Barton)

Leadership, Networks & Community Building:

Founding Chairman, Society of Materials Chemistry – Chennai Chapter (BARC, Mumbai, 2025–Current) (more at smcchennaichapter.com)

- Established a new regional platform connecting academic, industrial, and national lab communities in materials chemistry through symposia and thematic meetings.

Vice President, Society for Advancement of Electrochemical Science and Technology (SAEST, 2023–24)

- Supported national-level initiatives in electrochemical science, including technical meetings and outreach to young researchers.

Vice President, Indian Society for Electroanalytical Chemistry (ISEAC, 2021–24) – Contributed to strengthening India's electroanalytical chemistry community through conferences and collaborative programs.

Executive Council Member, Electrochemical Society of India (ECSI, 2024–Current) – Engaged in strategic planning for national electrochemical research and training activities.

Faculty Advisor & Initiator, Electrochemical Society – IIT Madras Student Chapter (since 2022) – Mentored a highly active student chapter that received the ECS "Chapters of Excellence" / best student group award in 2023, increasing student engagement with global ECS activities. (more at Ecsiitm.com)

International and National Academic Appointments:

May 2025- May 2028 Adjunct Faculty, Centre for Future Materials, **University of Southern Queensland**, Australia (Developing joint research and student exchange activities in sustainable energy storage)

April 2019 – June 2018: Visiting Faculty, Energy, Environment & Chemical Engineering **Department Washington University, St. Louis, USA** (Collaborated on energy and environmental engineering projects, strengthening IITM–WashU ties)

March 2023 – March 2024: Adjunct Faculty, Atria University, Bangalore, India (Supported curriculum and research activities in energy materials)

Education:

June 2006: PhD, Indian Institute of Science Bangalore (Thesis: Studies on Direct Methanol and

Direct Borohydride Fuel Cells), Supervisor: Prof. Ashok Kumar Shukla

May 2002: MSc in Applied Chemistry, Anna University, Chennai

May 1998: BSc in Chemistry, Bharathiyar University, Coimbatore

Awards and Honours:

Name of the Award	From	
ASC-Masila Vijaya Award -2024 (for	The Academy of Sciences, Chennai	
innovative patent)		
IESA Researcher of the year-2024	India Energy Storage Alliance (IESA)	
SMC Bronze Medal – 2023	Society of Materials Chemistry, BARC, India	
CRSI Bronze Medal – 2023	Chemical Research Society of India	
Australia Awards Fellowships to collaborate	Department of Foreign Affairs and Trade	
with U. Sydney	Department of Poleign Affairs and Trade	
Trend Setter Grant Award-2023 (Rs 49 lakhs	The Energy Consortium, IIT Madras	
= \$58k)	The Energy Consortium, III Wadras	
CSR Changemaker Award-2023	IIT Madras	
Amara Raja Award-2021	Electrochemical Society of India, Bengaluru	
Fellow of the Royal Society of Chemistry	RSC	
(2020)	RSC	
Fellow of the Academy of Sciences, Chennai	Academy of Sciences, Chennai	
Gold Medallist in BSc, University 1st Rank	Pharathiar University Coimbatore	
holder	Bharathiar University, Coimbatore	

Editorial Service & Community Coordination: Coordinated international teams of authors and reviewers, strengthening global networks in electrochemistry and energy storage

- Guest Editor Springer | *Ionics*, for the special issue to celebrate the contributions of Prof A K Shukla (ECS Fellow) to the field of applied electrochemistry (2025) https://link.springer.com/article/10.1007/s11581-025-06418-7
- Guest Editor Wiley | Asian J. Organic Chemistry, ChemNanoMat & Chemistry An Asian Journal, for the special collection honoring Prof. Indrapal Singh Aidhen for his contributions to Carbohydrate and Materials Chemistry (2026)
- **Guest Editor-** Publisher | *J. Electrochemical Society of India* for the special issue on Flow Batteries (2025)

- **Guest Editor** Wiley | *Small, Batteries & Supercaps, Advanced Sustainable Systems* for the special collection of articles from the International Conference on Energy Conversion & Storage 2025
- **Guest editor** Publisher | *J. Electrochem. Soc.*, the USA for the focus issue on Energy Storage in China 2021
- **Guest editor** Publisher | the special issue (2022) on "Energy Storage and Photovoltaics" from *J. Photochemistry and Photobiology*

International Collaborations and MoU:

- Visited MCUT Taiwan sponsored by MCUT between 26th Feb 1st March 2025 & 14 18th October 2025 as invited speaker for SDSE-2025 conference and to sign MoU for joint degree program
- Visited the **University of Pretoria** sponsored by Uni. Pretoria for conducting a workshop on "Renewable Energy and Storage" between 1st to 3rd October 2025 and to sign MoU.
- Visited **DGIST**, **South Korea** funded through a joint project between DGIST-IITM, and delivered a invite talk at Polymer Society of Korea's conference at Jeju between 11th April to 20th April 2025 with DGIST support.
- Visited **U. Sydney** with Joint Funding from Bilateral Mobility Program (6th 12th September 2023 for initiating research collaboration between IITM and U. Sydney)
- Visited **U. Sydney** along with a delegation of IITM between $12^{th} 26^{th}$ November 2023 using Australia Award Fellowship of Department of Foreign Affairs and Trade (DFAT)-Australia.
- Visited **U. Sydney** under the International SDG Collaboration Program 2024 awarded by the Office of Global & Research Engagement of U. Sydney (20th June 1st July 2024)

International Conferences Conducted:

IECS-2023, IECS-2025, Small Science Symposium-2025, ICSTEE-2025

Industry & Societal Impact Network:

- 5kWh Zn-Br₂ flow battery with proprietary additives to Archean Chemicals Pvt. Ltd. Technology transferred to Archean https://twitter.com/iitmadras/status/1631195298872840192?t=S36XIIWYi5nddJsp7n3AK w&s=08
- Development of 10kW/100kWh Vanadium Redox Flow battery to Oil and Natural Gas Corporation (ONGC-OECT), India.
- Demonstrated kW-scale flow battery in the Indi Energy Week held in Goa in February 2024.
- Served in the technical committee of Bureau of Indian Standards (BIS) for framing standards on battery testing and life prediction.

NPTEL Experience:

• Developed and successfully run online National Programme on Technology Enhanced Learning (NPTEL+) courses (eMobility and Battery Technology) for Industry

professionals and freelancers. The eMobility course is running its 8th Cohort and Battery Technology is its 3rd Cohort successfully. ID5500 Battery Technology course will be available from July 2026 (recording completed with NPTEL), and CY6015 Electrochemistry for Web-Enabled MTech will be ready by Jan 2026 (recording underway).

- o https://elearn.nptel.ac.in/shop/exec-edu-ongoing/certificate-programme-on-emobility-cpoem-cohort-8/?v=13b5bfe96f3e
- o https://elearn.nptel.ac.in/shop/completed-courses/execedu-closed/battery-cell-technology-cohort-3/?v=13b5bfe96f3e

Publication summary/selected papers/patents

>180 articles, (most of them as corresponding authors), h-index: 33, i10: 112; Citations: 4420, Patents: 11 granted & 8 pending

https://scholar.google.com/citations?user=8MvVXi8AAAAJ&hl=enhttps://orcid.org/0000-0003-2231-2665

Peer-Reviewed Publications: Primary Research

- **180.** Anoop Naikkath, Kothandaraman Ramanujam, Ramanathan Srinivasan, A regenerable tin gas diffusion electrode as a durable and cost-effective cathode for large-scale CO₂ reduction with enhanced viability via brine co-electrolysis, *Electrochimica Acta*, 549, **2026**,148018, https://doi.org/10.1016/j.electacta.2025.148018
- 179. Monika Senthilkumar, Vikram Venkatesan, Swati Panigrahi, Kothandaraman Ramanujam, Anandhakumar Sukeri, Gold Nanoparticles Decorated Borophene Nanosheets: An Efficient Catalyst for Ultrafast Chemical Dye Degradation of Methylene Blue and Rhodamine B, *ChemCatChem*, 7,23, 2025, e01286, https://doi.org/10.1002/cctc.202501286
- **178.** Swati Panigrahi, Wataru Ueda, Ken Watanabe, Kothandaraman Ramanujam , Bi–Al co-doping in garnet electrolytes: Toward scalable, high-density, and cost-effective solid-state electrolytes, *Journal of Alloys and Compounds*, **2025**, <u>1041</u>,183796, https://doi.org/10.1016/j.jallcom.2025.183796
- **177.** Swati Panigrahi, Anandhakumar Sukeri, and Kothandaraman Ramanujam Borophene anchored gold nanoparticles; an efficient two-dimensional catalyst for the conversion of 4-nitrophenol to 4-aminophenol, *Applied Materials Today*, **2025**, <u>47</u>, 102934, https://doi.org/10.1016/j.apmt.2025.102934
- **176.** Karthikraja Esackraj, Venkata Surya Kumar Choutipalli, Naga Venkateswara Rao Nulakani, Kothandaraman Ramanujam, Ganesan Vaidyanathan, Shuford Vaidyanathan, Subramanian Kevin, Venkatesan, Rational Design of BN-Based Biphenylene Analogues as Single-Atom Catalysts for Electrochemical Nitrogen Reduction Reaction, *ACS Applied Energy Materials*, **2025**, 8, 17, 12553–12569, https://doi.org/10.1021/acsaem.5c01485

- **175.** Nikhil George Mohan, Kothandaraman Ramanujam, A sonochemical alternative for nitrate to ammonia production, *Chemical Communications*, **2025**, 61, 14145-14148, https://doi.org/10.1039/D5CC02472B
- **174.** Manavi Rajan, Sethuraman Sankararaman, Kothandaraman Ramanujam, Melt Diffusion Assisted Performance Enhancement of Organic Cathode Materials for Zinc-Ion Batteries, *ACS Electrochemistry*, **2025**, https://doi.org/10.1021/acselectrochem.5c00212
- **173.** Kothandaraman Ramanujam, Venkataraman Thangadurai, "Professor Ashok Kumar Shukla", *Ionics*, **2025**, https://doi.org/10.1007/s11581-025-06418-7
- **172.** Adhigan Murali and Venkatesan Natesan and Sakar Mohan and Abdullah Al Souwaileh and Aashish S. Roy and M. Raja and Kothandaraman Ramanujam and Seon Joo Park and Sung Soo Han, Insights into the amine-end-terminated fluorophore based zwitterionic poly(methyl methacrylate) quasi-solid electrolyte for flexible supercapacitors, *Journal of Molecular Liquids*, **2025**, 426,127355, https://doi.org/10.1016/j.molliq.2025.127355
- **171**. Esackraj Karthikraja, Naga Venkateswara Rao Nulakani, Pandiarajan Devi, Palanichamy Murugan, Kothandaraman Ramanujam, VG Vaidyanathan, Venkatesan Subramanian, First-principles insights into biphenylene-based graphynes: promising novel two-dimensional carbon allotropes for thermoelectric applications, *Journal of Chemical Sciences*, **2025**, 137:29 DO1: https://doi.org/10.1007/s12039-025-02361-2
- **170.** Camillie Syiemlieh Collinica, Ilango Bhuvaneesh, Kothandaraman Ramanujam, Venkatakrishnan Parthasarathy, Velusamy Marappan, Kathiravan Arunkumar, Delving into the Role of a Conjugated Rhodanine Acceptor in D–D′–A Dyes for Photovoltaic Applications, *The Journal of Physical Chemistry C*, **2025**, DOI: https://doi.org/10.1021/acs.jpcc.5c00475
- 169. Murali Adhigan, Venkatesan Natesan, Mohan Sakar, Al Souwaileh Abdullah, S. Roy Aashish, Raja .M, Kothandaraman Ramanujam, Joo Park Seon, Soo Han Sung Insights into the amine-end-terminated fluorophore based zwitterionic poly (methyl methacrylate) quasi-solid electrolyte for flexible supercapacitors, *Journal of Molecular Liquids*, 2025,426, 2025, 127355,DOI: https://doi.org/10.1016/j.molliq.2025.127355
- 168. Richa Gupta, Nikhil George Mohan, John Bell, Ashok Kumar Nanjundan, Kothandaraman Ramanujam, Fusion of Nitro Isomers of Naphthoquinone Enhances Capacity and Cyclability in Zn-ion Batteries, *Sustainable Energy Fuels*, 2025, 9, 2207-2216 DOI: https://doi.org/10.1039/d4se01542h

- **167.** Jeeth Sharma, Richa Gupta, Kothandaraman Ramanujam, Vaibhav Kulshrestha, Leveraging Long-Life Alkaline Redox Flow Batteries Using Durable and High-Hydroxide Exchange N-Bridged Triazine Framework membranes, *Small*, **2025**, 2406395 DOI: https://doi.org/10.1002/sml1.202406395
- **166.** Richa Gupta, Chinmaya Mirle, Kothandaraman Ramanujam, Enhancing Solubility of Anthrarufin by Tethering Alkyl Phosphonate and Mitigating Capacity Decay with Additive in Aqueous Organic Redox Flow Batteries, *Sustainable Energy Fuels*, **2025**, DOI: https://doi.org/10.1039/D4SE00838C
- **165.** Sumanta Kumar Das, Yashwant Pratap, Kharwar Prabakaran Varathan, Kothandaraman Ramanujam, Akhila Kumar Sahu, Engineered Co/Ni–N Bonds in Bimetallic Nanocomposites for Effective Oxygen Reduction catalysts in fuel cells, *ACS Appl.Energy Mater.* **2025**, 8,2,1189–1200, DOI: https://doi.org/10.1021/acsaem.4c02709
- **164.** Sandeep Kumar Mohapatra, Kothandaraman Ramanujam, Sankararaman Sethuraman, Tracking and Tackling the Capacity Fading in Viologen based Aqueous Organic Redox Flow Batteries, *J. Electrochem. Soc.*, **2025**, 172 010523, DOI: https://doi.org/10.1149/1945-7111/ada640
- 163. <u>Duangailung Kamei</u>, <u>Richa Gupta</u>, <u>Kothandaraman Ramanujam</u>, <u>Nurul Alam Choudhury</u> HQ-doped redox-active gelatin hydrogel membrane electrolytes synthesized by chemical crosslinking of gelatin with glyoxal and glutaraldehyde for solid-state EDLCs, *Ionics*, 2025, DOI: https://doi.org/10.1007/s11581-025-06123-5
- **162.** Anubhab Sahoo, Tejendra Dixit, Anshu Kumari, Sharad Gupta, Kothandaraman R, PP Rajeev, MS Ramachandra Rao, Sivarama Krishnan, <u>Facile control of giant green-emission in multifunctional ZnO quantum dots produced in a single-step process: femtosecond pulse <u>ablation</u>, *Nanoscale Advances*, **2025**, DOI: https://doi.org/10.1039/D4NA00793J</u>
- **161**. Sumanta Das, Yashwant Kharwar, Prabhakaran Varathan, Kothandaraman Ramanujam, Ahila Kumar Sahu, Engineered Co/Ni-N Bonds in Bimetallic Nanocomposites for Effective Oxygen Reduction Catalysts in Fuel Cells, *ACS Applied Energy Materials*, 8, 2, 1189–1200, **2025**, DOI: https://doi.org/10.1021/acsaem.4c02709
- **160**. Megha Bala, Nandini Jaiswal, Harun Khan, Kothandaraman Ramanujam Boron-doped carbon felt electrode on stabilizing cycle life of soluble lead redox flow battery, *Ionics*, **2024**, 024-05993-5, DOI: https://doi.org/10.1007/s11581-024-05993-5
- 159. Neha, Aarju Mathew, Ganapathi Rao Kandregula, Kothandaraman Ramanujam, Debdutta Ray, Parasuraman Swaminathan, Water-based activated carbon ink for printed

- flexible biodegradable supercapacitors, *Advanced Sustainable Systems*, 9(1), 2400649, **2024**,DOI: https://doi.org/10.1002/adsu.202400649
- **158.** Richa Gupta, Kothandaraman Ramanujam, Turning Adversity into Advantage: Investigating Capacity Decay Mode of Carboxylate functionalized-anthraquinone in Organic Redox Flow Batteries, *ACS Applied Energy Materials*, **2024**, 7, 18, 7737–7744, DOI: https://doi.org/10.1021/acsaem.4c01123
- **157**. Jeet Sharma, Harun Khan, Prashant Upadhyay, Amit Rajak, Sarthak Mishra, Nagalakshmi Gayathri.M, Kothandaraman Ramanujam, Vaibhav Kulshrestha, Robust sulfonated proton-exchange membrane for poly(styrene-co-divinyl benzene)melt-interpenetrated polyethylene network for vanadium redox flow batteries, *ACS Applied Energy Materials*, **2024**, 7, 7384-7396 https://doi.org/10.1021/acsaem.4c01583
- **156.** Swati Panigrahi, Kothandaraman Ramanujam, Zein protein binder coupled with chitosan-derived carbon for polysulfide trapping in Li-S batteries, *J. Chemical Sciences*, **2024**, 136:62, DOI: https://doi.org/10.1007/s12039-024-02301-6
- **155**. Harun Khan, Aishwarya kesh, Kothandaraman Ramanujam, A.K.Sahoo, Functionalized graphene nanofiber-based low-cost composite membrane for vanadium redox flow battery applications, *J. Chemical Sciences*, **2024**, 136, 83, DOI: https://doi.org/10.1007/s12039-024-02318-x
- **154.** Harun Khan, Nandini Jaiswal, Nikhil C, M.S.Ramanchandra rao, Kothandaraman Ramanujam, Conformal coating of PbO₂ around boron doped diamond coated carbon felt positive electrode for stable and high-capacity operation of soluble lead redox flow battery, *J.Energy Storage*, **2024**, 99, 113304 https://doi.org/10.1016/j.est.2024.113304
- **153**. Mohana Priya Babu, Sahana B.Moodakare, Raman Vedarajan, Kothandaraman Ramanujam, Quasi-Gel Polymer Electrolyte Interfaced with Electrodes through Solvent-Swollen Poly(ethylene oxide), for High-Performance Lithium/Lithium-Ion Batteries, *ACS Applied Materials & Interfaces*, **2024**, 16, 34, 45399–45410, DOI: https://doi.org/10.1021/acsami.4c06192

- **152.** Kanhai Kumar , Pragyan Tripathi , Gokul Raj , Dova Kalyan , Demudu Babu Gorle , Nikhil George Mohan , Surendra Kumar Makineni , Kothandaraman Ramanujam , Abhishek Kumar Singh and Karuna Kar Nanda, Green Synthesis of Magnesium Single Atom Catalyst from Spinacia oleracea-Chlorophyll Extracts for Sustainable Electrocatalytic Nitrate Reduction to Ammonia, *Green chemistry*, 2024, **26**, 7931-7943, DOI: https://doi.org/10.1039/D4GC01422G
- **151.** Richa Gupta, Kothandaraman Ramanujan, A highly conjugated tetrakis-lawsone organic cathode material for enhancing the capacity utilization in the zinc-ion batteries, *J. Chemical Sciences*, **2024**, 136 (19). DOI: https://doi.org/10.1007/s12039-023-02244-4
- **150.** Ganapathi Rao Kandregula, Kothandaraman Ramanujam, Selection of Solid-State Electrolytes for lithium-ion batteries using Clustering Technique, *J. Chemical Sciences*, **2024**, 136 (38). DOI: https://doi.org/10.1007/s12039-024-02263-9
- **149.**Debashis Mahato , Aswin Praveen, L.K. Nivedha , Tamilselvi Gurusamy, Kothandara man Ramanujam , Prathap Haridoss , Tiju Thomas, Elucidating the role of interface of Cu-Co hybrid metal oxide for oxygen reduction reaction in Zn-air batteries, *Surfaces and Interfaces*, **2024**, 46, 103924 DOI: https://doi.org/10.1016/j.surfin.2024.103924
- **148.** Priya Vallayil, Vikas S. Padalkar, Chinmoy Nandi, Kothandaraman Ramanujam, Sethuraman Sankararaman, An Engineered Electrode of Phenazine with Suitable Binder and Carbon to Exhibit Excellent Energy and Power Density in an Aqueous Organic Zinc Ion Battery, *J. Power Sources*, **2024**,597,234153, DOI: https://doi.org/10.1016/j.jpowsour.2024.234153
- **147.** Anoop M, Nikhil G M, Kothandaraman R, Ramanathan S, Mechanism of Electrochemical Carbon Dioxide Reduction to Formate on Tin Electrode, *Chemical Engineering Journal*, **2024**, 482,148972, DOI: https://doi.org/10.1016/j.cej.2024.148972
- **146.** Dipsikha Ganguly, Kothandaraman Ramanujam, Sundara Ramaprabhu, Improving Pt Utilization and Electrochemical Activity of Proton Exchange Membrane Fuel Cells Through Surface Modification of Carbon Nanotube Catalyst Support, *Energy Technology*, **2024**, 12, 2301291, DOI: https://doi.org/10.1002/ente.202301291
- **145.** Jayasree Kumar, Nikhil George Mohan, Tamilselvi Gurusamy, Sai Manoj NVT Gorantla, Prathap Ravichandran, Kartik Chandra Mondal, Kothandaraman Ramanujam, Electrochemical Dinitrogen to Ammonia Reduction at a Nickel (II)Site: An Easy Access to Air-Stable Catalyst, *J. Mater. Chem. A*, **2024**, **12**, 4473-4483, DOI: https://doi.org/10.1039/D3TA05857C "Article featured as a **HOT PAPER**."

- **144**. Anandhakumar Sukeri, Swati Panigrahi, and Kothandaraman Ramanujam, Sonochemically synthesized hydride-stabilized boron nanosheets via radical-assisted oxidative exfoliation for energy storage application, *Chem Comm*, **2024**, **60**, 176-179. DOI: https://doi.org/10.1039/D3CC04342H (Invited Article)
- **143.** Sandeep Kumar Mohapatra, Kothandaraman R, and Sethuraman Sankararaman, Molecular size exclusion effect extending the cycling stability of a non-aqueous redox flow battery, *APL Energy*, **2023**, 1, 036103. DOI: https://doi.org/10.1063/5.0167853
- **142.** Sundar Sudharsan, Rajendran Rajaram Sachin Kumar, Parasuraman Swaminathan Kothandaraman Ramanujam, Lakshman Neelakantan, Copper oxide anchored polyaniline modified glassy carbon electrode: A new sensor platform for the Amperometric determination of Chlorpyrifos, *Electrochimica Acta*, **2023**, 471, 143305. DOI: https://doi.org/10.1016/j.electacta.2023.143305
- **141.** Sharma Jeet, Gupta Richa, Mishra Sarthak, Ramanujam, Kothandaraman, Kulshrestha Vaibhav, Sulfonated Poly (2, 6-dimethyl-1, 4-phenylene ether) Modified Mixed Matrix Bifunctional Polyelectrolyte Membrane for Long-run Anthrarufin-Based Redox Flow Battery, *ACS Applied Materials & Interfaces*, **2023**, 15, 44899. DOI: https://doi.org/10.1021/acsami.3c08089
- **140.** Sandeep Kumar Mohapatra, Kothandaraman R, and Sethuraman Sankararaman, Benzylviologen/N-hexylphenothiazine based non-aquous organic redox flow battery in inert condition, *J. Energy Storage*, **2023**, 72, 108739. DOI: https://doi.org/10.1016/j.est.2023.108739
- **139.** Rajaram Rajendran, Sachin Kumar, Kothandaraman Ramanujam, and Lakshman Neelakantan, Electrochemical Determination of Paraquat Using Ordered Mesoporous Carbon (CMK-3) Modified Glassy Carbon Electrode, *J. Electrochem. Soc.*, **2023**, 170, 087514. DOI: https://10.1149/1945-7111/acedd0
- **138.** Rajaram Rajendran, Sachin Kumar, S Sudharsan, Pavul Raj Rayappan, Kothandaraman Ramanujam and Lakshman Neelakantan, Amperometric Determination of Hydrazine Using Au Nanoparticle Incorporated CMK-3 Modified Glassy Carbon Electrode, *J. Electrochem. Soc.*, **2023**, 170, 087511, DOI: https://doi.org/10.1149/1945-7111/aced70
- **137.** Premkumar G, Toka Swu, Richa Gupta and Kothandaraman R, C-H functionalization of aromatic amines for azidation catalyzed by Betti base coordinated copper(II) complexes

- under ultrasonication, *New J. Chem.*, **2023**, 47, 15677-15685. DOI: https://doi.org/10.1039/D3NJ01927F
- **136.** Richa Gupta, Chinmaya Mirale and Kothandaraman Ramanujam, Dimerizing Lawsone into Bis(lawsone) to Counter Solubility and Attain Facile Zn²⁺ Ion Diffusion for Stable Capacity in Aqueous Zinc-Ion Batteries, *ACS Appl. Energy Mater.* **2023**, 6, 13, 7119–7128. DOI: https://doi.org/10.1021/acsaem.3c00799
- 135. Abhilipsa Sahoo, and Kothandaraman Ramanujam, Use of voltage for recomposing degraded redox active molecules for flow battery applications, *J. Mater. Chem. A*, 2023, 11, 13623-13632, DOI: https://doi.org/10.1039/D3TA00624G (Invited Article)
- **134.**Pavul Raj, Mohana Priya Babu, Raja Murugan, Muthuraj Divamahalakshmi, Kothandaraman Ramanujam, Confined sulfur electrode to achieve quasi-solid state sulfur conversion reaction in Li-S battery, *J. Energy Storage*, 67, 107601, **2023**, DOI: https://doi.org/10.1016/j.est.2023.107601
- **133.** Manju P. Maman, Tamilselvi Gurusamy, Arun K. Pal, Rajkumar Jana, Kothandaraman Ramanujam, Ayan Datta and Sukhendu Mandal, Electrocatalytic Reduction of Nitrogen to Ammonia Using Tiara-like Phenylethanethiolated Nickel Cluster, *Angew. Chem. Int. Ed.* e202305462, **2023**, DOI: https://doi.org/10.1002/anie.202305462
- **132.** Tamilselvi Gurusamy, Rajendran Rajaram, Ganapathi Rao Kandregula and Kothandaraman Ramanujam, Electrochemical sensing of NADH using 4 nitrobenzediazonium tetrafluoroborate salt functionalized multiwalled carbon nanotubes, *Dalton Trans.*, 52, 6041 6051, **2023**, DOI: https://doi.org/10.1039/D3DT00216K (Invited Article)
- **131.** Sravani Potham, Kothandaraman Ramanujam, A novel hierarchical porous activated carbon-organic composite cathode material for high performance aqueous zinc-ion hybrid supercapacitors, *J. Power Sources*, 557, 232551, **2023**, DOI: https://doi.org/10.1016/j.jpowsour.2022.232551;
- **130.** Ganguly Dipsikha, Ramanujam Kothandaraman, Sundara Ramaprabhu, Low-temperature synthesized Pt₃Fe alloy nanoparticles on etched carbon nanotubes catalyst support using oxygen-deficient Fe₂O₃ as catalytic centre for PEMFC applications, *ACS Sustainable Chem. Eng.* 11, 3334–3345, **2023**, DOI: https://doi.org/10.1021/acssuschemeng.2c06453

- **129.** Suriyanarayanan Subramanian, Babu Mohana Priya, Murugan Raja, Muthuraj Divamahalakshmi, Ramanujam Kothandaraman, Nicholls Ian, Highly efficient and recycling of cobalt from spent lithium ion batteries using an N-methylurea-acetamide nonionic deep eutectic solvent, *ACS Omega*, 8, 6959–6967, **2023**, DOI: https://doi.org/10.1021/acsomega.2c07780
- **128.** Priya Vallayil, Sethuraman Sankararaman, Kothandaraman Ramanujam, Structurally and electrochemically tunable pyrylium platforms: A new class of redox anolyte for non-aqueous organic redox flow battery operating at a high-current density, *J. Energy Storage*, 58, 106325, **2023**, DOI: https://doi.org/10.1016/j.est.2022.106325
- **127.** Subramanian Suriyanarayanan, Sudip Mandal, Kothandaraman Ramanujam, Ian A.Nicholls, Smart bio-nano interface derived from zein protein as receptors for biotinyl moiety, *Talanta*, 256, 124298, **2023**, DOI: https://doi.org/10.1016/j.talanta.2023.124298
- **126.** Subramanian Suriyanarayanan, Ganapathi Rao Kandregula, Kothandaraman Ramanujam, Ian A. Nicholls, Sustainable synthesis of hierarchically grown chloramphenicol-imprinted poly(caffeic acid) nanostructured thin films, *J. Appl. Polym. Sci.*, 140, e53560, **2023**, DOI: https://doi.org/10.1002/app.53560
- **125.** Jeet Sharma, Harun Khan, Prashant Upadhyay, Ramanujam Kothandaraman, Vaibhav Kulshrestha, Stable Poly(2,6-dimethyl-1,4-phenylene ether) Based Cross-Linked Cationic Polyelectrolyte Membrane with Ionic Microstructure Modification for Efficient VRFB Performance, *ACS Appl. Energy Mater.* 6, 447-460, **2023**, DOI: https://doi.org/10.1021/acsaem.2c03421;
- **124.** Tamilselvi G, Nikhil George M, Ganapathi Rao K, Dhinesh Kumar M, Ramanathan S, Kothandaraman R, Mechanistic analysis of the dissociative reduction of nitrogen to ammonia by ZnMn₂O₄ catalyst derived from spent batteries, *Catalysis Today*, **2023**, 423, 113898. DOI: https://doi.org/10.1016/j.cattod.2022.09.004
- **123**. Vivekananda Mahanta, Richa Gupta, Kothandaraman Ramanujam, Hydrobromide Salt of Tribromodopamine as a Positive Electroactive Species with a Three-Electron Redox Process for Redox Flow Battery Applications, *ACS Appl. Energy Mater.* 5, 15166–15174, **2022**, DOI: https://doi.org/10.1021/acsaem.2c02833
- **122**. Harun Khan, M. Raja, N.V.Sarma, M. Nagarajan, J. Ramesh, G.A. Pathanjali , Damaraju Parvatalu, Saroj Chaudhary, R. Kothandaraman, Design, Development, and Demonstration of a 1kW/10kWh Vanadium Redox Flow Battery System Minimizing Shunt Current Losses, *J. Electrochem Soc. India*, 71, 45-50, **2022**.

- **121.** D Mahato, Tamil Selvi G, SK Jain, K Ramanujam, P Haridoss, T Thomas, CuO modified ZnO on nitrogen-doped carbon: a durable and efficient electrocatalyst for oxygen reduction reaction, *Mater. Today Chem.*, 26, 101167, **2022**, DOI: https://doi.org/10.1016/j.mtchem.2022.101167;
- **120.** LK Nivedha, Dhinesh Kumar M, Ganapathi Rao K, Raja M, Kothandaraman R, ZnMn₂O₄/Carbon Composite Recycled from Spent Zinc-Carbon Batteries for Zn-Air Battery Applications, *J. Electrochem. Soc.* 169, 100544, **2022**, DOI: 10.1149/1945-7111/ac9a7c
- **119.** Venkatesan N, Kesavan T, Raja M, Kothandaraman R, Nishad Fathima N, Efficient electrochemical performance of nitrogen-doped porous activated carbon for high energy symmetric pouch cell supercapacitors, *J. Energy Storage*, 30, 105698, **2022**, DOI: https://doi.org/10.1016/j.est.2022.105698;
- **118.** T. Kesavan, M. Raja and R. Kothandaraman, Rationally designed N/P-dual doped ordered mesoporous carbon for supercapacitors, *J. Mater. Sci.*, 57 (36), 17380-17397, **2022**, DOI: https://doi.org/10.1007/s10853-022-07733-4
- **117.** M. Debashis, G. Tamilselvi, R. Kothandaraman, P. Haridossa and TijuThomasac, Unravelling the role of interface of CuOx-TiO2 hybrid metal oxide in enhancement of oxygen reduction reaction performance, *Int. J. Hydrog. Energy*, *47*, 34048-34065, **2022**, DOI: http://doi.org/10.1016/j.ijhydene.2022.08.016;
- **116.** Ganapathi Rao Kandregula, R. J. Naik and Kothandaraman, R 3D Prussian Blue Decorated Porous Carbon Composite Electrode for Advanced Asymmetric Supercapacitor Applications, *J. Energy Storage*, 54, 105291, **2022**, DOI: https://doi.org/10.1016/j.est.2022.105291
- **115.** Nandini J, Harun Khan, Kothandaraman R, The combined impact of trimethyloctadecylammonium chloride (TMOAC) and sodium fluoride on cycle life and energy efficiency of soluble lead-acid redox flow battery, *J. Energy Storage*, 54, 105243, **2022**, DOI: https://doi.org/10.1016/j.est.2022.105243;
- **114.** Chinmaya Mirle a nd Kothandaraman R, On capacity up-gradation and in-situ capacity rebalancing in anthrarufin based alkaline redox flow battery, *ACS. Appli. Energ. Mater*, 5, 9711–9721, **2022**, DOI: https://doi.org/10.1021/acsaem.2c01392;
- 113. Anish Satpati, Ganapathi Rao Kandregula, and Kothandaraman R, Machine Learning enabled High-Throughput Screening of Inorganic Solid Electrolytes for Regulating

- Dendritic Growth in Lithium Metal Anodes, *New. J. Chem.*, 46, 14227-14238, **2022**. DOI: 10.1039/D2NJ01827F;
- **112.**Yaswanth P, Tamilselvi G, Sudip Mandal and Kothandaraman R, Copper-Based Non-Precious Metal Catalysts Derived from the In-Situ and Ex-Situ Loading of Copper-bipyridine Metal-Organic Framework on Activated Carbon for Oxygen Reduction Reaction, *J. Chem. Sci.*, 134, 75, **2022**, DOI: https://doi.org/10.1007/s12039-022-02067-9;
- **111.** Sumana. B, Kothandaraman. R and Ramesh Gardas, Nitrogen-Doped High Surface Area Porous Carbon Material Derived from Biomass and Ionic Liquid for High-Performance Supercapacitors, *Ind. Eng. Chem. Res.*,61, , 12073-12082, **2022**. DOI: https://doi.org/10.1021/acs.iecr.2c00195;
- **110.** Nagarani Sandhiran, Sasikala Ganapathy, Yuvaraj Manoharan, Dipsikha Ganguly, Mohan raj Kumar, Kothandaraman Ramanujam and Subramanian Balachandran, CuO–NiO binary transition metal oxide nanoparticle anchored on rGO nanosheets as high-performance electrocatalyst for the oxygen reduction reaction, *Environ. Res.*, 211, **2022**, 112992, DOI: https://doi.org/10.1016/j.envres.2022.112992;
- **109.** Nandini Jaiswal, Harun Khan, and Kothandaraman R, Recent Developments and Challenges in Membrane-Less Soluble Lead Redox Flow Batteries, *J. Electrochem.Soc.*, 169, 040543, **2022**, DOI: https://doi.org/10.1149/1945-7111/ac662a
- **108**. Dariusz M Niedzwiedzki, Divya Unny, Ganapathi Rao Kandregula and Kothandaraman R, Excited-state properties of newly sensitized imidazole-arylamine-based organic DSSC sensitizers insolvent and adsorbed on TiO2/FTO support, *Dyes & Pigm.*, 202, **2022**, 110273, DOI: https://doi.org/10.1016/j.dyepig.2022.110273
- **107.** Vivekananda Mahanta and Kothandaraman R, Vanadium Polydopamine Flow Battery, *J. Electrochem. Soc.*, 169, **2022**, 030525, DOI: https://doi.org/10.1149/1945-7111/ac5ad3;
- **106.** Rajendran Rajaram, Tamilselvi Gurusamy, Kothandaraman Ramanujam, Lakshman Neelakantan, Electrochemical determination of paraquat using gold nanoparticle incorporated multiwalled carbon nanotubes, *J. Electrochem. Soc.*, 169, **2022**, 047522, DOI: doi.org/10.1149/1945-7111/ac5bae;
- **105**. Ganapathi Rao Kandregula, M. Dhinesh Kumar, N. Arul Murugan, and R. Kothandaraman, Data-driven Approach Towards Identifying Dye-Sensitizer Molecules for

- Higher Power Conversion Efficiency in Solar Cells, *New. J. Chem.*, 46, 4395-4405, **2022**, DOI: https://doi.org/10.1039/D1NJ05498H;
- **104.** Jagadeeswari S, Raja Murugan, Harun Khan, Indrapal Singh Aidhen and Kothandaraman Ramanujam, Investigation of alkyl amine substituted quinone derivatives for the redox flow battery applications in acidic medium, *J. Electrochem. Soc.*, 169, 020533, **2022**, DOI: https://doi.org/10.1149/1945-7111/ac505f;
- **103.** B. Sumana and R. Kothandaraman, Combination of redox-active natural indigo dye and bio-derived carbon from ridge gourd fruit for high-performance asymmetric supercapacitors, *Ionics*, 28, 1427-1440, **2022**, DOI: https://doi.org/10.1007/s11581-021-04433-y;
- **102.** V. Priya, R. Kothandaraman and S. Sankararaman, A new 2,3-Dimethoxy-1,4-naphthoquinone redox anolyte for non-aqueous organic static redox battery, *Electrochimica Acta*, 407, 139889, **2022**, DOI: 10.1016/j.electacta.2022.139889;
- **101**. M. Divyamahalakshmi, M. Raja, R. Pavul Raj, Ganapathi Rao Kandregula and R. Kothandaraman, Dual-role Magnesium Aluminate Ceramic Film as an Advanced Separator and Polysulfide Trapper in Li-S battery: Experimental and DFT investigations, *New. J. Chem.*, 46, 3185-3198, **2022**, <u>DOI: 10.1039/D1NJ05347G</u>;
- **100**. G. Tamilselvi, R. Rajaram, M. Raja and R. Kothandaraman, A web of poly bis(benzimidazolato)copper (II) around multiwalled carbon nanotubes for the electrochemical detection of hydrogen peroxide, *New. J. Chem.*, 46, 1222-1231, **2022**, <u>DOI:</u> 10.1039/D1NJ04903H;
- **99.** U. Divya, Ganapathi Rao Kandregula and R. Kothandaraman, Starburst configured imidazole-arylamine organic sensitizers for DSSC applications, *J. Photochem. Photobiol. A Chem.*, 426, 113735, **2022**, DOI: https://doi.org/10.1016/j.jphotochem.2021.113735
- **98.** Harun Khan, M. Raja and R. Kothandaraman, Bilayer Micro-Mesoporous Membrane Assembly Offering Lower Pressure Drop to Realize High Energy Efficient Vanadium Redox Flow Battery, *J. Electrochem. Soc.*, 168, 100542, **2021**, DOI: https://doi.org/10.1149/1945-7111/ac3114;
- **97.** K. Ganapathi Rao, M. Sudip M. R. Chinmaya and R. Kothandaraman, A computational Approach on Engineering Short Spacer for Carbazole based Dyes for Dye-sensitized Solar Cells, *J. Photochem. Photobiol. A Chem.*, 419, 113447, **2021**, DOI: https://doi.org/10.1016/j.jphotochem.2021.113447;

- **96**. P K. Yaswanth, G. Tamilselvi, M. Sudip and R. Kothandaraman, Activation of Oxygen Reduction Reaction on Carbon Supported Ni-Based Complexes, *ChemistrySelect*, 6, 9101-9111, **2021**, DOI: https://doi.org/10.1002/slct.202101231;
- **95**. R. J. Naik, P. Sravani and R. Kothandaraman, Energy-dense aqueous carbon/carbon supercapacitor with a wide voltage window, *J. Electrochem. Soc.*, 168, 70538, **2021**, DOI: https://doi.org/10.1149/1945-7111/ac1319;
- **94**. G. Dipsikha, R. Kothandaraman, S. Ramaprabhu, Platinum Nanoparticles Decorated Expired Drug-derived N-Doped Ketjenblack Carbon as Efficient Catalyst for PEM Fuel Cells, *J. Electrochem. Soc.*, 168, 64517, **2021**, DOI: https://doi.org/10.1149/1945-7111/ac0bef;
- **93.** M. Debashis, P. K. Yashwant, R. Kothandaraman, H. Prathap and TijuThomas, S, N Co-Doped Graphene Quantum Dots Decorated TiO₂ and Supported with Carbon for Oxygen Reduction Reaction, *Int. J. Hydrog. Energy*, 16, 21549-21565, **2021**, DOI: https://doi.org/10.1016/j.ijhydene.2021.04.013;
- **92**. K. Ganapathi Rao, M. Sudip and R. Kothandaraman, Molecular engineering of near-infrared active boron dipyrromethene moiety with various donors and acceptors for tuning the absorption behavior and electron injection of the resultant dyes, *J. Photochem. Photobiol. A Chem*, 410, 113161, **2021**, DOI: https://doi.org/10.1016/j.jphotochem.2021.113161;
- **91**. M. Raja, Harun Khan, S Sankarasubramanian, D. Sonawat, V. K. Ramani and R. Kothandaraman, Binder-free thin graphite fiber mat sandwich electrode architectures for energy-efficient vanadium redox flow batteries, *Catalysis Today*, 370, 181-188, **2021**, DOI: https://doi.org/10.1016/j.cattod.2021.02.012;
- **90.** Janraj Naik Ramavath, M. Raja, K. Balakumar and R. Kothandaraman, An Energy and Power Dense Aqueous Zinc-Ion Hybrid Supercapacitor with Low Leakage Current and Long Cycle Life, *J. Electrochem. Soc.*, 168, 010538, **2021**, DOI: https://doi.org/10.1149/1945-7111/abdc7a;
- **89**. M. R. Chinmaya, M. Veerababu and R. Kothandaraman, Electrode and conductive additive compatibility yielding excellent rate capability and long cycle life for sustainable organic aqueous Zn-ion batteries, *ACS Applied Energy Materials*, 4, 1218, **2021**, DOI: https://doi.org/10.1021/acsaem.0c02511

- **88.** L. K. Nivedha, M. Raja, R. Kothandaraman, Interplay of the functional units of a binder in the oxygen reduction process of zinc-air battery, *Catalysis Today*, 370, 66-74, **2021**, DOI: https://doi.org/10.1016/j.cattod.2020.09.022;
- **87.** M. R. Chinmaya and M. Veerababu and R. Kothandaraman, Crossover-free hydroxy-substituted quinone anolyte and potassium ferrocyanide catholyte for aqueous alkaline organic redox flow battery, *Catalysis Today*, 370, 173-180, **2021**, DOI: https://doi.org/10.1016/j.cattod.2020.12.012;
- **86.** M. Vivekananda, M. Raja, Harun Khan, and Kothandaraman R, Drastic Improvement in Capacity-Retention and Polarization of Vanadium Redox Flow Battery with Hydrophilic Co₃O₄ Nanostructure Modified Activated Graphite Felt Electrodes, *J. Electrochem. Soc.*, 167, 160504, **2020**, DOI: https://doi.org/10.1149/1945-7111/abc90a;
- **85.** M. R. Chinmaya, M. Raja, Vasudevarao P, Kothandaraman R and Sankararaman S, Functionalised carbazole as a cathode for high voltage non-aqueous organic redox flow batteries, *New J. Chem.*, 44, 14401-14410, **2020**, DOI: https://doi.org/10.1039/D0NJ02543G;
- **84**. Kharwar, Yashwant Pratap, Srinu Akula, Akhila Kumar Sahu, and Kothandaraman R, Highly Durable Pt-Based Catalyst Supported on Carbon Derived from Tamarind Seeds for Oxygen Reduction Reaction in PEM Fuel Cell, *J. Electrochem. Soc.*, 167, 104515, **2020**, DOI: https://doi.org/10.1149/1945-7111/ab9c7c;
- **83**. D. Unny, G.R. Kandregula, J. Sivanadanam, K. Ramanujam, Molecular engineering of pyrene carbazole dyes with a single bond and double bond as the mode of linkage, *New J. Chem.*, 44, 16511-16525, **2020**, DOI: https://doi.org/10.1039/D0NJ03228J;
- **82.** G. Tamilselvi, M. Raja M, D. Akalya, R. Kothandaraman, Confinement Catalysis of Non-covalently Functionalized Carbon Nanotube in Ascorbic Acid Sensing, *Electroanalysis*, 32, 2481- 2492, **2020**, DOI: https://doi.org/10.1002/elan.202060119;
- **81.** A. Rajput, H. Khan, S.K. Raj, R. Kothandaraman and V. Kulshrestha, Styrene- co -DVB grafted PVDF proton exchange membranes for vanadium redox flow battery applications, *Mater. Adv.*, 1, 1930, **2020**, DOI: <u>10.1039/D0MA00496K</u>;
- **80.** S. Mandal, G.R. Kandregula, R. Kothandaraman, replacing aromatic π -system with cycloalkyl in triphenylamine dyes to impact intramolecular charge transfer in dyes pertaining to dye-sensitized solar cells application, *J. Photochem. Photobiol. A Chem.*, 403, 112862, **2020**, DOI: https://doi.org/10.1016/j.jphotochem.2020.112862;

- **79.** P. Mani, A. Sheelam, P.E. Karthik, R. Sankar, R. Kothandaraman, S. Mandal, Nickel-Based Hybrid Material for Electrochemical Oxygen Redox Reactions in an Alkaline Medium, *ACS Appl. Energy Mater.*, 3, 6415, **2020**, DOI: https://doi.org/10.1021/acsaem.0c00615
- **78.** U. Naveen Kumar, Janraj Naik Ramavath, Sourav Ghosh, Tiju Thomas and R. Kothandaraman, Chromium oxynitride as durable electrode materials for symmetric supercapacitors, *Batteries & Supercaps*, 3, 780-788, **2020**, DOI: https://doi.org/10.1002/batt.201900225;
- 77. J. Vanshika, G. Tamilselvi, P. Gayathri and R. Kothandaraman, Oxygen sensitive 1-amino-2-naphthol immobilized functionalized-carbon nanotube electrode, *New J. Chemistry*, 44, 8849-8858, **2020**, DOI: https://doi.org/10.1039/D0NJ00438C
- **76.** Ganapathi Rao Kandregula, S. Jagadeeswari, and R. Kothandaraman, Drastic improvement in dye-sensitized solar cell efficiency by electrosorption based dye staining of Titania semiconductor photoanode, *Electrochimica Acta*, 349, 136344, **2020**, DOI: https://doi.org/10.1016/j.electacta.2020.136344
- **75.** S. Jagadeeswari, Indrapal Singh Aidhen and R. Kothandaraman, New cyclic and acyclic imidazole-based sensitizers for achieving highly efficient photoanodes for dye-sensitized solar cells by potential assisted method, *New J. Chemistry*, 44, 10207-10219, **2020**, DOI: https://doi.org/10.1039/D0NJ00137F;
- **74.** V. Srinivasan, S. Jagadeeswari, R. Kothandaraman, and Mariadoss Asha Jhonsi, Delineating the enhanced efficiency of carbon nanomaterials including the hierarchical architecture of the photoanode of dye-sensitized solar cells, *Mater. Adv.*, 1, 2964-2970, **2020**, <u>DOI: 10.1039/D0MA00654H</u>
- **73.** D. M. Niedzwiedzki and G. R. Kandregula and S. Jagadeeswari and R. Kothandaraman, Excited State Properties of Metal-Free (D2d and T-SB-C) and Ru-Based (N719 and Z907) Dyes and Photoinduced Charge Transfer Processes in FTO/TiCl₄/TiO₂/Dye Photoanodes Fabricated by Conventional Staining and Potential-Assisted Adsorption, *J. Phys. Chem. A*, 124, 22, 4333-4344, **2020**, DOI: https://doi.org/10.1021/acs.jpca.0c00653
- **72.** Ganapathi Rao Kandregula, Sudip Mandal, Prince Gollapalli, Satyesh Yadav, and R. Kothandaraman, A computational study on boron dipyromethene ancillary acceptor-based dyes for dye-sensitized solar cells, *New J. Chem.*, 44, 4877-4886, **2020**, DOI: https://doi.org/10.1039/C9NJ05334D;

- **71.** J. Prerna, R. Vedarajan, S. Anjaiah, R. Kothandaraman, Bernard Malaman, and Noriyoshi Matsumi, An all solid-state Li-ion battery composed of low molecular weight crystalline electrolyte, *RSC Advances* 10, 8780-8789. **2020**, DOI: https://doi.org/10.1039/C9RA09559D;
- **70.** M. Prabu, D. Sharat, G. Tamilselvi, E. Karthik, B. P. Ratheesh, R. Kothandaraman and S. Mandal, Sodalite-type Cu-based Three-dimensional Metal-Organic Framework for Efficient Oxygen Reduction Reaction, *Chem. An Asian J.*, 14, 4814-4818, **2019**, DOI: https://doi.org/10.1002/asia.201901242;
- **69.** G. Tamilselvi, B. Abhishek, R. Kothandaraman, and N. Chandra Kumar, Electrochemical Sensors Using Liquid Filled Multiwalled Carbon Nanotubes: Enhanced Sensor Characteristics, and NMR Relaxometry Evidence of Liquid Confinement, *J. Electrochem. Soc.*, 166, B1186-B1195, **2019**, DOI: https://doi.org/10.1149/2.0831913jes;
- **68**. P. Vasudeva rao, and R. Kothandaraman, Paper-Based Disposable Zinc-Vanadium Fuel Cell for Micropower Applications, *ChemistrySelect*, 4, 8398 8403, **2019**, DOI: https://doi.org/10.1002/slct.201802624;
- **67.** J. N. Ramavath, M. Raja, Sanjeet Kumar, and R. Kothandaraman, Mild acidic mixed electrolyte for high-performance electrical double layer capacitor, *Appl. Surf. Sci.*, 489, 867-874, **2019**, DOI: https://doi.org/10.1016/j.apsusc.2019.05.343;
- **66.** P. K. Yashwant, Sudip Mandal, and R. Kothandaraman, Carbon Supported and Nafion Stabilized Copper (II) Based 1D Coordination Polymer as an Electrocatalyst for Oxygen Reduction Reaction, *J. Electrochem. Soc.*, 166, F3193-F3201, **2019**, DOI: https://doi.org/10.1149/2.0221907jes;
- **65.** Vivekananda Mahanta, M. Raja, and R. Kothandaraman, Activated carbon from sugarcane bagasse as a potential positive electrode catalyst for vanadium redox flow battery, *Materials Letters*, 247, 63-66, **2019**, **DOI**: https://doi.org/10.1016/j.matlet.2019.03.045;
- **64.** M. Raja, B. Sadhasivam, R. Dhamodharan, R. Kothandaraman, A chitosan/poly (ethylene glycol)-ran-poly (propylene glycol) blend as an eco-benign separator and binder for quasi-solid-state supercapacitor applications, *Sustainable energy & fuels*, 3(3), 760-773, **2019**, DOI: https://doi.org/10.1039/C8SE00530C;
- **63.** G. Dipsikha, S. Ramprabhu, R. Kothandaraman, Chemical Vapor Deposition-Grown Nickel-Encapsulated N-Doped Carbon Nanotubes as a Highly Active Oxygen Reduction

- Reaction Catalyst without Direct Metal-Nitrogen Coordination, *ACS omega*, 3(10), 13609-13620, **2018**, DOI: https://doi.org/10.1021/acsomega.8b01565;
- **62.** M. Veerababu, R. Kothandaraman, Glycination: A Simple Strategy to Enhance the Cycling Performance of Perylene Dianhydride for Secondary Li-Ion Battery Applications, *ChemistrySelect*, 3(38), 10657-10662, **2018**, DOI: https://doi.org/10.1002/slct.201801588;
- **61.** J. N. Ramavath, M. R. Chinmaya, R. Kothandaraman, Iron-Dicyano Dichloro Quinone Primary Battery, *Chemistry Select*, 3(37), 10281-10286, **2018**, DOI: https://doi.org/10.1002/slct.201801878;
- **60.** P. Vasudeva rao, M. R. Chinmaya, S. Shankararaman, R. Kothandaraman, A High Voltage Organic Redox Flow Battery with Redox Couples O₂/Tetrabutylammonium Complex and Tris (4-bromophenyl) amine as Redox Active Species, *J. Electrochem. Soc.*, 165(11), A2696, **2018**, DOI: https://doi.org/10.1149/2.0661811jes;
- **59.** P. Vasudeva rao, J. N. Ramavath, C. He, V. K. Ramani and R. Kothandaraman, N-and P-co-doped Graphite Felt Electrode for Improving Positive Electrode Chemistry of the Vanadium Redox Flow Battery, *ChemistrySelect*, 3(30), 8678-8687, **2018**, **DOI:** https://doi.org/10.1002/slct.201801446;
- **58.** S. Jagadeswari, M. Sudip, Aidhen, I. S and R. Kothandaraman, Design of Cone-Shaped Hole Transporting Material Organic Structures for Perovskite Solar Cells Applications, *ChemistrySelect*, 3(28), 8159-8166, **2018**, DOI: https://doi.org/10.1002/slct.201801824;
- **57.** G. Tamilselvi, P. Gayathri, M. Sudip and R. Kothandaraman, Redox-Active Copper-Benzotriazole Stacked Multiwalled Carbon Nanotubes for the Oxygen Reduction Reaction, *ChemElectroChem*, 5(14), 1837-1847, **2018**, DOI: https://doi.org/10.1002/celc.201800110 (Invited Article)
- **56.** R. Kothandaraman, T. Thirupathi, Carbon supported g-C₃N₄ for electrochemical sensing of hydrazine, *Electrochemical Energy Technology*, 4(1), 21-31, **2018**, DOI: https://doi.org/10.1515/eetech-2018-0003;
- **55.** K. Rajavelu, M. Sudip, R. Kothandaraman and P. Rajakumar, Synthesis and DSSC application of triazole bridged dendrimers with benzoheterazole surface groups, *Solar Energy*, 166, 379-389, **2018**, DOI: https://doi.org/10.1016/j.solener.2018.03.071;

- **54.** M. Sudip, R. Vedarajan, Matsumi, N., and R. Kothandaraman, Computational Investigation of the Influence of π -Bridge Conjugation Order of Thiophene and Thiazole Units in Triphenylamine Based Dyes in Dye-Sensitized Solar Cells, *ChemistrySelect*, 3(13), 3582-3590, **2018**, DOI: https://doi.org/10.1002/slct.201702882;
- **53**. P. Mani, A. Sheelam, S. Das, G. Wang, V. K. Ramani, R. Kothandaraman and S. Mandal, Cobalt-based coordination polymer for oxygen reduction reaction, *ACS Omega*, 3(4), 3830-3834, **2018**, DOI: https://doi.org/10.1021/acsomega.8b00088;
- **52**. S. Jagadeswari, R. Mukkamala, M. Sudip, S. R Vedarajan, N. Matsumi, I. S. Aidhen, and R. Kothandaraman, Exploring the role of the spacers and acceptors on the triphenylamine-based dyes for dye-sensitized solar cells, *Int. J. Hydrog. Energy*, 43(9), 4691-4705, **2018**, DOI: https://doi.org/10.1016/j.ijhydene.2017.10.183;
- **51.** A. Sheelam, R. Kothandaraman, Iron (III) chloride-benzotriazole adduct for oxygen reduction reaction in alkaline medium, *Int. J. Hydrog. Energy*, 43(9), 4754-4762, **2018**, DOI: https://doi.org/10.1016/j.ijhydene.2017.10.115;
- **50**. S. Mandal, S. Suriyanarayanan, I. A. Nicholls, and R. Kothandaraman, Selective Sensing of the Biotinyl Moiety Using Molecularly Imprinted Polyaniline Nanowires, *J. Electrochem. Soc.*, 165(14), B669-B678, **2018**, DOI: https://doi.org/10.1149/2.0401814jes;
- **49.** M. Veerababu, N. Kuanr and R. Kothandaraman, Sodium Naphthalene Dicarboxylate Anode Material for Inorganic-Organic Hybrid Rechargeable Sodium-Ion Batteries, *J. Electrochem. Soc.*, 165(2), A175-A180, **2018**, DOI: https://doi.org/10.1149/2.0731802jes;
- **48.** P. Gayathri and R. Kothandaraman, Redox Active Cobalt-Bipyridine Metal Organic Framework-Nafion Coated Carbon Nanotubes for Sensing Ascorbic Acid, *J. Electrochem. Soc.*, 165(13), B603-B609, **2018**, DOI: https://doi.org/10.1149/2.0661813jes;
- **47.** U. Dhivya, S. Jagadeswari, M. Sudip, I. S. Aidhen, and R. Kothandaraman, Effect of Flexible, Rigid Planar and Non-Planar Donors on the Performance of Dye-Sensitized Solar Cells, *J. Electrochem. Soc.*, 165(13), H845-860, **2018**, DOI: https://doi.org/10.1149/2.0551813jes
- **46**. R. Verma, C.J. Park, R. Kothandaraman and V. U. Varadaraju, Ternary lithium molybdenum oxide, Li₂Mo₄O₁₃: A new potential anode material for high-performance rechargeable lithium-ion batteries, *Electrochimica Acta*, 258, 1445-1452, **2017**, DOI: https://doi.org/10.1016/j.electacta.2017.12.008;

- **45**. S. Suriyanarayanan, M. Sudip, R. Kothandaraman, and I. A. Nicholls, Electrochemically synthesized molecularly imprinted polythiophene nanostructures as recognition elements for an aspirin-chemosensor, *Sensors and Actuators B: Chemical*, 253, 428-436, **2017**, DOI: https://doi.org/10.1016/j.snb.2017.05.076;
- **44**. M. Sudip, S. Rao and R. Kothandaraman, Understanding the photo-electrochemistry of metal-free di and tri substituted thiophene-based organic dyes in dye-sensitized solar cells using DFT/TD-DFT studies, *Ionics*, 23(12), 3545-3554, **2017**, DOI: https://doi.org/10.1007/s11581-017-2158-y;
- **43.** S. Kushwaha, M.P. Karthikayini, G. Wang, M. Sudip, A. P. Bhobe, V. K. Ramani, R. Kothandaraman, A non-platinum counter electrode, MnNx/C, for dye-sensitized solar cell applications, *Appl. Surf. Sci.*, 418, 179-185, **2017**, DOI: https://doi.org/10.1016/j.apsusc.2016.12.140;
- **42**. M. Veerababu, G. Wang, V. K. Ramani and R. Kothandaraman, Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries, *Appl. Surf. Sci.*, 418, 9-16, **2017**, DOI: https://doi.org/10.1016/j.apsusc.2016.12.041;
- **41.** R. Verma, R. Kothandaraman and U. V. Varadaraju, In-situ carbon coated CuCo₂S₄ anode material for Li-ion battery applications, *Appli. Surf. Sci.*, 418, 30-39, **2017**, DOI: https://doi.org/10.1016/j.apsusc.2016.11.165;
- **40**. B. Sathiya, S. Anjaiah, R. Kothandaraman, R. Dhamodharan, Green, Seed-Mediated Synthesis of Au Nanowires and Their Efficient Electrocatalytic Activity in Oxygen Reduction Reaction, *ACS Appli. Mater. Interfaces*, 9(34), 28876-28886, **2017**, DOI: https://doi.org/10.1021/acsami.7b07553;
- **39.** P. Vasudeva Rao and R. Kothandaraman, Flexible paper-based borohydride-vanadium fuel cell for powering micro-nanosystems, *Ionics*, 23(7), 1811-1817, **2017**, DOI: https://doi.org/10.1007/s11581-017-1987-z;
- **38**. M. Veerababu and R. Kothandaraman, Introduction of Carbonyl Groups: An Approach to Enhance Electrochemical Performance of Conjugated Dicarboxylate for Li-Ion Batteries, *J. Electrochem. Soc.*, 164 (7), A1720, **2017**, DOI: https://doi.org/10.1149/2.1581707jes;
- **37.** D. N. Joshi, M. Sudip, R. Kothandraman, R. A. Prasath, Efficient light harvesting in dye sensitized solar cells using broadband surface plasmon resonance of silver nanoparticles with varied shapes and sizes, *Materials Letters*, 193, 288-291, **2017**, DOI: https://doi.org/10.1016/j.matlet.2017.02.008;

- **36**. M. Veerababu and R. Kothandaraman, Rational functionalization of perylene diimide for stable capacity and long-term cycling performance for Li-ion batteries, *Electrochimica Acta*, 232, 244-253, **2017**, DOI: https://doi.org/10.1016/j.electacta.2017.02.152;
- **35**. P. Vasudeva rao and R. Kothandaraman, On In–situ Redox Balancing of Vanadium Redox Flow Battery Using D-Fructose as Negative Electrolyte Additive, *ChemistrySelect*, 2(2), 720-727, **2017**, DOI: https://doi.org/10.1002/slct.201601417;
- **34.** M. Veerababu, N. Kuanr, R. Kothandaraman, Reversible Sodium Storage Behaviour of Aromatic Diimide Disodium Carboxylates, *J. Electrochem. Soc.*, 164(1), A6147-A6153, **2016,**DOI: https://doi.org/10.1149/2.0221701jes;
- **33.** S. Anjaiah, and R. Kothandaraman, Metal-Organic Complexes, [Co (bpy) 3] (NO₃)₂ and [Co (bpy) 2NO₃] NO₃· 5H₂O, for Oxygen Reduction Reaction, *J. Electrochem. Soc.*, 164(9), F1022-F1029, **2017**, DOI: https://doi.org/10.1149/2.0141712jes;
- **32**. P. Gayathri, and R. Kothandaraman, Aquotris (benzotriazole) sulfatocopper (II). benzotriazole Framework Assembled on Multiwalled Carbon Nanotubes through π - π Interaction for H₂O₂ Sensing in pH 7 Buffer Solution, *J. Electrochem. Soc.*, 164 (12), 2017, B591-B601, **2017**, DOI: https://doi.org/10.1149/2.0011713jes;
- **31**. M. P. Karthikayini, G. Wang, P. A. Bhobe, S. Anjaiah, V. K. Ramani, K. R. Priolkar, and R. Kothandaraman, Effect of protonated amine molecules on the oxygen reduction reaction on metal-nitrogen-carbon-based catalysts, *Electrocatalysis*, 8(1), 74-85, **2017**, DOI: https://doi.org/10.1007/s12678-016-0341-y;
- **30.** K. Suman, M. Sudip, S. Subramanian, S. Aryasomayajul, and R. Kothandaraman, A DSSC with an Efficiency of ~ 10%: Fermi Level Manipulation Impacting the Electron Transport at the Photoelectrode-Electrolyte Interface, *ChemistrySelect*, 1(19), 6179-6187, **2016**, DOI: https://doi.org/10.1002/slct.201601461;
- **29**. M. Sudip and R. Kothandaraman, DFT/TD-DFT Studies of Metal-Free N-Annulated Perylene Based Organic Sensitizers for Dye-Sensitized Solar Cells: Is Thiophene Spacer Essential for Improving the DSSC Performance? *ChemistrySelect*, 1(18), 5854-5862, **2016**, DOI: https://doi.org/10.1002/slct.201600868;
- **28**. S. Anjaiah, M. Sudip, T. Thippani, V. Ramkumar and R. Kothandaraman, Carbon-supported Co (III) dimer for oxygen reduction reaction in alkaline medium, *Ionics*, 22(11), 2183-2194, **2016**, DOI: https://doi.org/10.1007/s11581-016-1730-1;

- **27**. Sheelam, A and R. Kothandaraman, Nitrogen functionalized few layer graphene derived from metal-organic compound: a catalyst for oxygen reduction reaction, *Electrochimica Acta*, 216, 457-466, **2016**, DOI: https://doi.org/10.1016/j.electacta.2016.09.006;
- **26.** Rakesh Verma, R. Kothandaraman, and U. V. Varadaraju, Nanocrystalline Na₂Mo₂O₇: A new high performance anode material, *Electrochimica Acta*, 215, 192-199, **2016**, DOI: https://doi.org/10.1016/j.electacta.2016.08.094;
- **25**. M. Suman, K. Suman, R. Mukkamala, V. K. Siripina, I. S. Aidhen, B. Rajakumar, Band R. Kothandaraman, Metal-free bipolar/octupolar organic dyes for DSSC application: A combined experimental and theoretical approach, *Organic Electronics*, 36, 177-184, **2016**, DOI: https://doi.org/10.1016/j.orgel.2016.06.009;
- **24.** Rakesh Verma, R. Kothandaraman and U. V. Varadaraju, Disodium dimolybdate: a potential high-performance anode material for rechargeable sodium ion battery applications, *J. Solid-State Electrochem.*, 20(5), 1501-1505, **2016**, DOI 10.1007/s10008-016-3153-3;
- **23.** M. Veerababu, U. V. Varadaraju, and R. Kothandaraman, Reversible lithium storage behavior of aromatic diimidedilithium carboxylates, *Electrochimica Acta*, 193, 80-87, **2016**, DOI: https://doi.org/10.1016/j.electacta.2016.02.030;
- **22.** S. Debraj, Purna Chandra Rao, H. B. Aiyappa, ,S. Kurungot, M. Sudip, R. Kothandaraman and Sukhendu Mandal, Multifunctional copper dimer: structure, band gap energy, catalysis, magnetism, oxygen reduction reaction and proton conductivity, *RSC advances*, 6(44), 37515-37521, **2016**, DOI: 10.1039/C6RA05961A;
- **21.** K. Rajavelu, P. Rajakumar, M. Sudip, and R. Kothandaraman, Synthesis, photophysical, electrochemical, and DSSC application of novel donor–acceptor triazole bridged dendrimers with a triphenylamine core and benzoheterazole as a surface unit, *New J. Chem.*, 40 (12), 10246-10258, **2016**, DOI: https://doi.org/10.1039/C6NJ02126C;
- **20.** T. Thippani, M. Sudip, G. Wang, V. K. Ramani, and R. Kothandaraman, Probing oxygen reduction and oxygen evolution reactions on bifunctional non-precious metal catalysts for metal-air batteries, *RSC advances*, 6 (75), 71122-71133, **2016**, DOI: 10.1039/C6RA13414A;
- **19.** M. P. Karthikayini, T. Thirupathi, G. Wang, V. K. Ramani, and R. Kothandaraman, Highly active and durable non-precious metal catalyst for the oxygen reduction reaction in acidic medium, *J. Electrochem. Soc.*, 163(6), F539-F547, **2016**DOI: https://doi.org/10.1140/2.1001606/j.gr

DOI: https://doi.org/10.1149/2.1001606jes;

- **18**. M. Veerababu, U. V. Varadaraju, and R. Kothandaraman, Improved electrochemical performance of lithium/sodium perylene-3, 4, 9, 10-tetracarboxylate as an anode material for secondary rechargeable batteries, *Int. J. Hydrog. Energy*, 40(43), 14925-14931, **2015**, DOI: https://doi.org/10.1016/j.ijhydene.2015.09.001;
- **17.** K. M. Palanivelu, V. Prabhakaran, V. K. Ramani, and R. Kothandaraman, Controlling the nitrogen content of metal-nitrogen-carbon based non-precious-metal electrocatalysts via selenium addition, *J. Electrochem. Soc.*, 162(6), F475- F482, **2015**, DOI: https://doi.org/10.1149/2.0101506jes;
- **16**. V. Nallathambi, N. R. Leonard, R. Kothandaraman and S. C. Barton, Nitrogen precursor effects in iron-nitrogen-carbon oxygen reduction catalysts, *Electrochem. Solid-State Lett.*, 14(6), B55, **2011**, DOI: https://doi.org/10.1149/1.3566065;
- **15.** R. Kothandaraman, C. Bock, and Barry MacDougall, CH₃OH Oxidation Activities of an Unsupported PtxRuy Powder Catalyst before and after Different Electrochemical Treatments, *ECS Transactions* 28, 91, **2010**, DOI: https://doi.org/10.1149/1.3505463;
- **14.** R. Kothandaraman, V. Nallathambi, K. Artyushkova, and S. C. Barton, Non-precious oxygen reduction catalysts prepared by high-pressure pyrolysis for low-temperature fuel cells, *Applied Catalysis B: Environmental*, 92, 209-216, **2009**, DOI: https://doi.org/10.1016/j.apcatb.2009.07.005;
- **13**. R. Kothandaraman, W. Deng, M. Sorkin, A. Kaufman, H. Frank Gibbard, and S. C, Barton, Methanol anode modified by semipermeable membrane for mixed-feed direct methanol fuel cells, *J. Electrochem. Society*, 155, B865, **2008**, DOI: https://doi.org/10.1149/1.2943212;
- **12.** R. Kothandaraman and A. K. Shukla, A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover, *Fuel Cells*, 7, no. 3, 225-231, **2007**, DOI: https://doi.org/10.1002/fuce.200600023;
- **11.** R. Kothandaraman, S. K. Prashant, and A. K. Shukla, A 28-W portable direct borohydride–hydrogen peroxide fuel-cell stack, *J. Power Sources*, 162, 1073-1076, **2006**, DOI: https://doi.org/10.1016/j.jpowsour.2006.07.059;
- **10.** R. Kothandaraman., A. K. Shukla, A. Gayen, M. S. Hegde, K. R. Priolkar, P. R. Sarode, and S. Emura, Tailoring a Pt–Ru catalyst for enhanced methanol electro-oxidation, *J. Power Sources*, 157, 45-55, **2006**, DOI: https://doi.org/10.1016/j.jpowsour.2005.06.031;

- **9.** A. K. Shukla, R. Kothandaraman and K. Scott, Advances in mixed-reactant fuel cells, *Fuel cells*, 5, 436-447, **2005**, DOI: https://doi.org/10.1002/fuce.200400075;
- **8.** NA Choudhury, RK Raman, S Sampath, AK Shukla, An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, *J. Power Sources*, 143, 1-8, **2005**, DOI: https://doi.org/10.1016/j.jpowsour.2004.08.059;
- 7. R. Kothandaraman, and A. K. Shukla, Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells, *J. Applied Electrochem.* 11, 1157-1161, **2005**, DOI 10.1007/s10800-005-9021-y;
- **6.** S. K. Mondal, R. Kothandaraman, A. K. Shukla, and N. Munichandraiah, Electrooxidation of ascorbic acid on polyaniline and its implications to fuel cells, *J. Power Sources*, 145, 16-20, **2005**, DOI: https://doi.org/10.1016/j.jpowsour.2005.01.001;
- **5.** R. Kothandaraman, Nurul A. Choudhury, and Ashok K. Shukla, A high output voltage direct borohydride fuel cell, *Electrochem. Solid-State Lett.*, 7, A488, **2005**, DOI: https://doi.org/10.1149/1.1817855;
- **4.** R. Kothandaraman, G. Murgia, and A. K. Shukla, A solid-polymer electrolyte direct methanol fuel cell with a methanol-tolerant cathode and its mathematical modelling, *J Appl. Electrochemistry*, 10, 1029-1038, **2004**, DOI: https://doi.org/10.1023/B:JACH.0000042674.78355.6c;
- **3.** A. K. Shukla, R. Kothandaraman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura, and R. Kumashiro, Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells, *J. Electroanal. Chem.*, 563, 181-190, **2004**, DOI: https://doi.org/10.1016/j.jelechem.2003.09.010;
- **2.** A. K. Shukla, and R. Kothandaraman, Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells, *Annu. Rev. Mater. Res.*, 33, 155-168, **2003**, DOI: https://doi.org/10.1146/annurev.matsci.33.072302.09351;
- **1.** A. K. Shukla, C. L. Jackson, K. Scott, and R. Kothandaraman, An improved-performance liquid-feed solid-polymer-electrolyte direct methanol fuel cell operating at near-ambient conditions, *Electrochimica Acta*, 47, 3401-3407, **2002**, DOI: https://doi.org/10.1016/S0013-4686(02)00276-1;

Peer-Reviewed Publications: Reviews

- 1. Vimukthi Dananjaya1 Lei Ge, Nethmi Hansika, Venkata Chevali, John Bell, Satyanarayanan Seshadri, Pratheep Kumar Annamalai, Kothandaraman Ramanujam, Nisa Salim, Ashok Kumar Nanjundan, Advancing Energy Storage Technologies Beyond Lithium with Cellulose-Derived Sustainable Carbon Materials, *Small Structures*, 2025; 0: e202500551
- 2. Daphne Mary John, Pratheep Kumar Annamalai, Alireza Hosseinmardi, Sreekanth Kaduvallil Mahadeva, Kothandaraman Ramanujam, Raghuram Chetty, Rajkumar Patel, Ramanujam Brahmadesam Thoopul Srinivasa Raghava, Ashok Kumar Nanjundan, Progress in Zinc oxide- based polymer nanocomposites for advancing piezoelectric energy harvesting and self-powered devices, *Macromolecular Materials and Engineering*, 2025, ;0:e00239
- 3. Rubi Choudhary, Sangaraju Shanmugam, Kothandaraman Ramanujam, Bottlenecks and Techno-Economic Feasibility of the Zinc-Iodine Flow Battery, *ACS Applied Energy Materials*, 2025
- 4. Nandini Jaiswal, Harun Khan, Sangeeth John, Shubra Singh, Antonio Tricoli, Borui Liu, Kothandaraman Ramanujam, Advances in boron-doped diamond electrodes: Fabrication, electrochemical properties, and applications, *J. Alloys and Compounds*, 1036, **2025**, 181723
- 5. Muhammad Shoaib, Priya Vallayil, Nandini Jaiswal, Prathap Iyapazham, Sethuraman Sankaraeaman, Kothandaraman R*, and Venkataraman Thangadurai* for Advances in Redox Flow Batteries- A Comprehensive Review on Inorganic and organic Electrolytes and Engineering Perspectives, *Advanced Energy Materials*, 2024, 2400721
- 6. Nikhil G Mohanan, Kothandaraman R, Electrocatalysts for Ammonia Synthesis and How Close are We to the Haber-Bosch Synthesis? , Current Opinion in Electrochemistry, *Electrochemical Materials and Engineering*, 45, **2024**, 101520 (invited article)
- 7. A. Murali, M. Sakar, S. Priya, V. Vijayavarman, S. Pandey, Ryansu Sai, Y. Katayama, M. Abdul Kadera and R. Kothandaraman, Insights into the Emerging Alternative Polymer-based Electrolytes for All-Solid-State Lithium-ion Batteries: A Review, *Materials Letters*, 313, **2022**, 131764
- 8. Nandini Jaiswal, Harun Khan and Kothandaraman R, A review on the recent developments and challenges in the membrane-less soluble lead redox flow battery, *J. Electrochem. Soc.*, 169, **2022**, 040543
- 9. A. K. Shukla, and R. Kothandaraman, Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells, *Annu. Rev. Mater. Res.*, 33, **2003**, 155-168. (invited article)

Journal Cover Pages Featuring our Work

- 1.Sonochemically synthesized hydride-stabilized boron nanosheets via radical-assisted oxidative exfoliation for energy storage applications, Anandhakumar Sukeri, Swati Panigrahi, and Kothandaraman Ramanujam, Chem. Comm., 2024, DOI: https://doi.org/10.1039/D3CC04342H
- 2.New cyclic and acyclic imidazole-based sensitizers for achieving highly efficient photoanodes for dye-sensitized solar cells by potential assisted method, S. Jagadeeswari, Indrapal Singh Aidhen, R. Kothandaraman, New J. Chemistry, 44, 10207-10219, 2020. DOI: https://doi.org/10.1039/D0NJ00137F
- 3.Redox-Active Copper-Benzotriazole Stacked Multiwalled Carbon Nanotubes for the Oxygen Reduction Reaction, Tamilselvi Gurusamy, Prakasam Gayathri, Sudip Mandal, Kothandaraman Ramanujam, ChemElectroChem, 5, 1837-1847, 2018. DOI:https://doi.org/10.1002/celc.201800110

Patent	atents - Granted			
S.No	Title	Synopsis	Patent No. /year	
1	Composite membranes for aqueous redox flow batteries, Kothandaraman R, Harun Khan	The present invention relates to composite membranes for aqueous batteries. In particular, the invention pertains to composite membranes for redox flow batteries, comprising a hydrocarbon-based porous membrane and a cation-exchange polymer. A low-cost commercial hydrocarbon-based porous DARAMIC membrane has been utilised as the base framework and modified with a cation exchange polymer, namely sulfonated poly(ether ether ketone) (SPEEK), to simultaneously reduce the cost of vanadium redox	Indian Patent No.	

		flow batteries (VRFBs) and enhance ion selectivity. The membranes of the present invention exhibit improved peak power density and discharge capacity as compared to the standard Nafion membrane, offering an economically viable solution for large-scale energy storage applications.	
2	A battery cell, Kothandaraman R, Harun Khan, Nandhini Jaiswal.	The present study introduces an innovative near-zero gap cell design to enhance the rate capabilities while operating at reduced flow rates by improving electrolyte mass transport to the electrode for soluble lead redox flow battery applications (SLRFB). This design involves replacing the 10-20 mm conventional thick flow frame with a thin (0.5 mm) porous separator, creating an almost zerogap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design	Indian Patent No. 563374/2025

3	Metal oxynitride based photosensitive supercapacitor and photo supercapattery, Ramanujam, K.; Kandregula, G. R.; Naik, J.,	can not only significantly reduce relative costs and flow rates but also enhance the overall performance of SLRFB systems. Low band gap chromium oxynitride was developed and used to convert oxygen into superoxide radicals in the presence of light. This superoxide and oxidized chromium oxy nitride combination develops a firm double layer in the presence of light and the double layer	Indian Patent No. 556350/2024
		(UFCD), enhancing mass transport. The substantial reduction in the interelectrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration	

		primary battery. Novelty: chromium oxy nitride replacing expensive precious metal based catalysts and cell able to get charged without use of electricity.	
4	Process for preparing functionalized and hydride inserted boron/borophene nanosheets, Kothandaraman Ramanujam, Anandhakumar Sukeri, Swati Panigrahi	By probe sonication, boron nanosheets were produced oxidizing boron powder with the hydrogen radicals produced by the homolytic cleavage of water. These boron nanosheets can be used for controlled reduction reaction in organic synthesis and as anode material for Li-ion battery	Indian Patent No. 554250/2024
5	High-capacity redox flow battery, Kothandaraman Ramanujam, Abhilipsa Sahoo	During charging 2,6-dihyroxanthraquinone undergoes reduction forming radical anion, which undergoes dimerization forming a peroxo species which is electro inactive upto 2.0 V, therefore high voltage cut-off of 2.4 V exercised to reduce dimer into dianion, allowing us to reach close to the theoretical capacity of the battery	Indian Patent No. 553775/2024
6	Electrode for soluble lead acid redox flow battery and soluble lead acid redox flow battery comprising the same, Kothandaraman R, M.S.Ramachandra Rao,	The present invention relates to an electrode for soluble lead acid redox flow battery (SLRFB), wherein the electrode comprises a boron-doped	Indian Patent No. 550716/ 2024

	Nandhini Jaiswal, Harun	diamond (BDD) coated on	
	Khan, Nikhil C.	a carbon substrate. This	
		invention addresses	
		critical challenges faced	
		by soluble lead-acid redox	
		flow batteries (SLRFBs).	
		These challenges include	
		lead dendrite formation at	
		negative electrodes,	
		incomplete dissolution of	
		PbO2 deposits at positive	
		electrodes, high	
		overpotentials causing	
		oxygen evolution during	
		charging, carbon electrode	
		corrosion, and limitations	
		in cycle life and areal	
		capacity.	
7	Electrochemical fixation and	ZnMn ₂ O ₄ was synthesized	Indian Patent No.
	conversion of nitrogen into	using the recycled primary	502600 / 2024
	ammonia by ZnMn ₂ 0 ₄ spinel	battery and demonstrated	
	derived from spent battery,	its utility to convert	
	Kothandaraman R and	nitrogen to ammonia	
	Tamilselvi G	electrochemically	
8	Organic catholyte materials	Few quinone based redox	Indian Patent No.
	for aqueous organic flow	active materials were	493221 / 2024
	battery, Kothandaraman R,	developed and	
	Indrapal Singh Aidhen, Raja	demonstrated as energy	
	M, and Jagadeeswari S	storage medium in flow	
		battery	
9	A new multilayer sandwich	To reduce iR drop (ohmic	Indian Patent No.
	design of a redox flow battery	drop) a multilayer	428259 / 2023
	cell, Kothandaraman R and	sandwich carbon material	
	Varadaraju U V	was developed for	
		vanadium redox flow	
		battery and reduced	
		overpotential as much as	
		100 mV	
10	Solvent-filled multiwalled	Polar solvents were filled	Indian Patent No.
	carbon nanotubes for	into the multi walled	400805 / 2022

	enhanced electrochemical	carbon nanotubes, which	
	sensing applications,	demonstrated an order of	
	Kothandaraman R and	magnitude increased	
	Tamilselvi G.	sensitivity towards	
		simultaneous detection of	
		biomolecules such as	
		dopamine, uric acid,	
		ascorbic acid etc.	
11	Method for improving	During charging, in the	Indian Patent No.
	vanadium redox flow battery	negative electrode of	404775 / 2022
	performance by suppressing	vanadium redox flow	
	H ₂ evolution and balancing	battery hydrogen evolves	
	redox kinetics using organic	causing state of charge	
	molecules, Kothandaraman R	imbalance between the	
	and Vasudevarao P	anolyte and catholyte. To	
		prevent it, hydrogen	
		evolution was mitigated	
		using D-fructose	
12	Effect of semi - labile	EDTA was used along	Indian Patent No.
	multidentate ligands on	with the Mn-based non-	324235 / 2019
	oxygen reduction reaction	precious metal catalysts	
	performance of non-precious	for oxygen reduction	
	metal catalysts,	reaction. In the presence	
	Kothandaraman R and	of EDTA oxygen	
	Karthikayini M P	reduction reaction activity	
		enhanced.	
13	Novel catalyst for oxygen	A iron-based non-precious	US Patent No.
	reduction reaction in fuel	metal catalysts was	US20110287174A1
	cells, SAC Barton, R.	generated and	/ 2011
	Kothandaraman, V.	demonstrated for oxygen	
	Nallathambi	reduction reaction in fuel	
		cells	

Patents - Submitted				
S.No.	Title	Synopsis	Application No. /year	
1.	Gamma radiation-based	The present invention	Appl.No.	
	charging in Zinc-polyiodide	relates to a radiation	202541076918/2025	
	flow battery	mediated charging of a		
		redox flow battery system,		
		more particular to a gamma		

2.	A Smart Metallic Self- Healing Composite Coating and a Method of Preparation Thereof. Lakshman N, Kothandaraman	radiation-based charging in Zinc-polyiodide redox flow battery (ZIFB), and further to a method of non - electrical charging of the catholyte using gamma radiation in ZIFB. A Smart Metallic Self-Healing Composite Coating and a Method of Preparation Thereof.	Appl.No. 202541070953/2025
	R, Durgambika V, Yoganandan, G		
3.	Process for preparing Tin Coated High Performance Gas Diffusion Electrode (GDE), Kothandaraman R, Ramanathan S, Anoop N	A novel three step method to fabricate a stable tin-based gas diffusion electrode (Sn-GDE) for electrochemical CO ₂ reduction to formate. The electrode operates at up to 500 mA/cm ² with >70% formate selectivity and shows >120 h stability (Formate selectivity >75 %) at 100 mA/cm ² , with an integrated reactivation protocol to restore performance.	Appl. No. 202441096498/2024
4.	THF-Water Solvent Mixture with New Electrolyte Composition for Enhancing Iodine Solubility in Zinc-Polyiodide Redox Flow Batteries, Kothandaraman R, Indrapal Singh Aidhen, Rubi	A THF-water cosolvent is employed to enhance the solubility of I ₂ in Zinc-polyiodide redox flow batteries, leading to improved electrolyte utilization and, consequently, a reduction in the overall cost of ZIFB.	Appl. No. 202541022785/2025

5.	Enhancing Solubility of Bromine in Energy-Dense Zinc-Bromine Flow Batteries Through Low-Cost Electrolyte Additive, Kothandaraman R, Nivedha. L.K	additive is incorporated to improve bromine solubility	Indian Patent filing, Year: 2025, IDF No 3286
6.	Low-cost Octa-Vinyl POSS/SPEEK Blend membrane for vanadium redox flow battery, Kothandaraman R, Priyanka Bavdane, Dr. Gaurav Pande, Vansh Bhutani, Aneena Simon		Year: 2025, IDF No
7.	Donnan Potential Countering the water movement making membrane perm selective to K ⁺ ions in Zinc-polyiodide redox flow batteries, Kothandaraman R, Harun Khan, Rubi	In the zinc-polyiodide redox flow battery, the thicker Nafion membrane is replaced with a bilayer membrane composed of a porous and a thinner 25 µm Nafion membrane. However, the low-cost electrolyte additive KCl is incorporated to mitigate electrolyte crossover.	Appl. No. 202441051658/2024
8.	Probe Sonication Converting Nitrates to Ammonia in	Nitrates were converted into ammonia using hydrogen	Appl. No. 202341087398 /2023

	water, Kothandaraman	radicals obtained through	
	Ramanujam, Nikil George	the homolytic cleavage of	
	Mohan	water by ultrasonication.	
9.	Boosting the coulombic and	Boron-doped diamond	Appl. No.
<i>)</i> .	energy efficiencies along with	(BDD)coating was done on	202341057222 / 2023
	rate capability of SLRFB by	the carbon felt electrode	2023410372227 2023
	using a BDD coated carbon	making it corrosion resistant	
		1	
	felt electrode,	at high voltage operation in	
	Kothandaraman Ramanujam,	aqueous electrolytes. The	
	Ramachandrarao M.S, Harun	use of BDD coated	
	Khan, Nikhil C, Nandini	demonstrated utilizing it as	
	Jaiswal	positive electrode in the	
		soluble lead redox flow	
		battery enhancing the	
		voltage, capacity and energy	
		efficiency of the battery	
10.	Catholyte material for	A three electron reduction	Appl. No.
	aqueous acidic flow battery,	process was established	202241042107/2022,
	Vivekananda Mahanta, Richa	using dopamine	IDF NO. 2384.
	Gupta, and Kothandaraman	hydrobromide salt, which is	
	R,	utilized as catholyte in the	
		zinc-organic catholyte flow	
		battery	
11.	Molecular and electrode	A novel, ordered	Indian Patent Filing
	engineering of pentacene-	mesoporous carbon (CMK-	Year: 2019, IDF NO.
	5,7,12,14-tetraone for	3) was used to host the	1945)
	sustainable organic aqueous	pentacene-tetraone	
	zn-ion batteries,	enhancing the C-rate	
	Kothandaraman R, Veerababu	(charging rate) of the	
	M, Chinamay R	battery.	
	Kothandaraman R, Veerababu	(charging rate) of the	

Resear	Research Grants - Sponsored				
S. No.	Title	Sponsoring Agency / Aims of Grant	Period	PI/Co -PI	Amount ~ (Rupees in lakhs)
1	Non-flammable aqueous zinc-bromine battery: AI- based molecular design, synthesis, and	DGIST, South Korea/ Finding electrolyte membranes for the	2024-2026	PI	26

	characterization of polymer MOF-composite porous membrane	zinc bromine flow battery			
2	Development of boron-doped diamond coated corrosion-resistant carbon fabric for energy, and textile/organic effluent water cleaning applications	National Technical Textiles Mission, Ministry of Textiles / For Developing BDD coated carbon felt, carbon paper to demonstrate corrosion resistance of cathode in fuel cells and flow batteries	2023-2026	PI	702
3	1kW/5kWh Redox Flow Battery with Anthraquinone Based Anolyte and Iron Catholyte: A Commercial Worthy India-Centric Solution for Grid-Scale Energy Storage	DST-TDP / For the synthesis of kg scale 2,6-dihydroxy anthraquinone for demonstrating cost-reduction methodologies and utilizing it for kW scale flow battery building with industry support	2023-2025	PI	230
4	Renewable Ammonia Fuel for Circular Energy Economy- A Carbon Free Approach	Energy Consortium- IIT Madras / Demonstrating ammonia reactor using the 2D materials developed in this project	Jul 2023- Jan 2025	PI	46
5	Boron-doped diamond based electrolysis: Giving a second life to industrial waste water	Mobility Grant To U. Sydney by IIT Madras / To collaborate with Prof Antonio Tricoli from U. Sydney on BDD	Mar 2023- Mar 2025	PI	7

		coated electrodes for water treatment			
6	Soluble Lead Redox Flow Battery	ARCI-Hyderabad / To demonstrate kW scale soluble lead redox flow battery with the additives and modified carbon felt electrodes developed in our lab	April 2023-Oct 2024	PI	15
7	Activation of zinc and exploring the catalytic amount of zinc for cycloaddition reaction	Pfizer Healthcare India Private Limited / Demonstrated recovery of zinc from the spent solution by electrochemical plating process	Jan 2023- July 2023	Co-PI (50% share)	38.16
8	Development of 1 kW/10 kWh Zinc-Bromine Redox Flow Battery	Archean Chemical Industries Limited / For demonstrating 5kW gel redox battery using novel corrosion free zinc substrate	2023-2024	PI	109
9	Energy Storage and Conversion Vertical of The Energy Consortium IIT Madras	MHRD-IITM / For developing quasi solid state electrolyte for Li-S and Li-ion batteries	2023-2025	Co-PI	1500 (300 is for advanced energy storage and conversion vertical)
10	Spent Battery Recycling into Electrocatalyst for Ammonia Production and Raw Materials for New Batteries	Department of Science and Technology / Demonstration of Zinc-air battery and ammonia production using ZnMn ₂ O ₄	29 Sep 2021 to 28 Sep 2024	PI	77.93

		extracted from the spent battery.			
11	Advanced Centre for Energy Storage and Conversion (PCoE)	Ministry of Human Resource and Development / For Li-S battery development	04 Feb 2021 to Feb 2025	PI	225 250 (March 2023-March 2025)
12	Meso-microporous coreshell carbon-based materials and electroactive diluent for long cycle life and high energy density Li- S batteries	Indian Space Research Organization / For developing mesoporous ordered carbon material host for Sulfur loading. This is utilized as cathode in Li-S battery	29 Oct 2020 to 28 Oct 2022	PI	24.99
13	Tailoring of quinones as high energy density cathode materials for sustainable secondary aqueous Zn-ion batteries	Indian Institute of Technology Madras / Developed organic cathode materials for rechargeable Zn-ion battery	4 Jan 2020 to 23 Jan 2021		6.10
14	On the Reduction of iR- Iosses, Flow Optimization and Identifying Alternative Membranes to Nafion for 1kW -4kWh Vanadium Redox Flow Battery Suitable for Residential Use	Ministry of Human Resource and Development / Developed novel thin carbon electrodes for reducing iR loss at kW scale redox flow battery	2 Years (30 Dec 2019 to 29 Dec 2022)		99.89
15	Energy Storage Platform on Supercapacitors	Department of Science & Technology / Developed cathode materials for Li/Na battery and organic	5 Years (06 Nov 2019 to 05 Nov 2024)		95.62

		redox active materials for flow battery			
16	Light induced process of hierarchical electron cascade system, materials and devices for solar energy conversion	Science and Engineering Research Board	14 Nov 2018 to 13 Mar 2022	Admi nstrat or for the NPDF grant	10.00
17	Development of High Performance and Low- Cost Boron-Doped Diamond Electrodes for Waste Water Treatment	Impacting Research Innovation and Technology — IMPRINT / Served as consultant for analysing the waste water treated by novel boron-doped diamond electrode based cell	09 Dec 2019 to 08 Dec 2022	Co-PI (20% share)	142.78
18	Ionogel Electrolyte Membrane Fuel Cell with Plasma Electrolytic Nitrided Metallic Bipolar Plate and Effective Flow Field Design	Department of Science & Technology / Developed catalyst for the oxygen reduction reaction	02 Sep 2019 to 01 Sep 2022	Co-PI (33% Share)	56.73
19	Investigation of Stable Organic and Organometallic Radical Ions and Ions as Electro- active Species in Organic Redox Flow Batteries (RFBs) in Non-aqueous Media	Science and Engineering Research Board / Developed phenazine, pyrylium platforms, benzyl viologen based redox molecules for flow battery	24 Sep 2018 to 24 Feb 2022	Co-PI (50% share)	75.59
20	DST Solar Energy Harnessing Centre - Energy Storage Domain - Sub Project	Department of Science & Technology / Modifications of the	28 Jun 2018 to 30 Jun 2022	Co-PI (50% share)	293.70

		electrode and electrolyte for vanadium redox flwo battery to improve energy efficiency and capacity			
21	DST Solar Energy Harnessing Centre - PV Domain (RWP-PartA) - Sub Project Role: PI	Department of Science & Technology / Developed cyclic and acyclic imidazole, carbazole, triphenylamine based dyes for dye sensitized solar cells	3 years (28 Jun 2018 to 30 Jun 2022)	Co-PI (share ~ 1.5 Cr)	559.14
22	Development of 10 kW / 50 kWh Redox Flow Battery System for Solar PV Applications	Impacting Research Innovation and Technology – IMPRINT	16 Feb 2017 to 31 Mar 2022	Co-PI (20% share)	399.84
23	Development and Demonstration of 250W, 1kWh Vanadium Redox Flow Battery Systems Rechargeable by Renewable Energy such as Solar and Wind Energy	Department of Science & Technology / Demonstrated 250 W flow battery stack and operated using solar power	3 Years (17 May 2017 to 16 Aug 2020)	PI	81.37
24	Direct light to chemical energy conversion: A hybrid of solar cell and battery	Indian Institute of Technology Madras	1 Year (01 May 2016 to 30 Jun 2017)	PI	7.00
25	Rechargeable zinc-air battery with novel 3D zinc electrode structure and durable bipolar cathode	Council of Scientific and Industrial Research	01 Jan 2015 to 31 Dec 2016	PI	3.00

26	Polynuclear transition metal complexes for electrochemical reduction of oxygen	Department of Science & Technology / Developed Mn, Fe and Co based non- precious metal catalyst for fuel cell	14 Aug 2014 to 13 Aug 2017	PI	25.00
27	Non-precious metal catalyst for oxygen reduction reaction in Polymer Electrolyte Membrane Fuel Cells (PEMFC) with improved durability and activity	Indian Space Research Organization / Developed non- precious metal catalysts for oxygen reduction reaction	26 Sep 2011 to 25 Sep 2014	PI	31.40
28	Non-precious metal catalysts with increased active catalytic-site density for the electrochemical oxygen reduction reaction	Nissan Research Support Program	06 Jul 2011 to 05 Jul 2013	PI	8.80
29	Exploding type metal precursors for the synthesis of a non-precious metal catalyst with improved oxygen reduction activity	Indian Institute of Technology Madras	05 Jul 2011 to 04 Aug 2013)	PI	20.70

Resear	Research Grants – Consultancy (Kothandaraman is the PI in all the projects listed below)				
S.No.	Title	Sponsoring Agency	Period	Amount ~ (Rupees in lakhs)	
1	1kW/5kWh Redox Flow Battery with Anthraquinone Based Anolyte and Iron Catholyte: A Commercial Worthy India-Centric Solution for Grid-Scale Energy Storage	LeeP eDrive Pvt. Ltd.	2024-2026	10 (Industry partner of DST project S.No. 2 in the Research Grants – Sponsored Table above)	

2	Strategies towards the development of 10 kW/ 50 kWh Vanadium redox flow batteries for commercial applications	OECT (ONGC)	Jan 2024 – June 2025	829
3	Electrolyte Evaluation	D. J. Irvin Company LLC	4 months (Mar – Jun 2023)	4
4	Patent Licensing (Indian Patent Filing Year: 2022, IDF NO. 2384)	Archean Chemical Industries Limited	2023	50 + 2% Royalty
5	Development of an efficient organic magnesiumborate-based (OMBB) electrolyte compatible with ordered mesoporous carbon (OMC) based sulfur cathode material for Mg-S battery technology	Tumpudi Innovations Private Limited	July 2023 – July 2024	32.34
6	Exploration on use of Efficient Phenazine Based Molecules as Redox-Active Materialin Redox Flow Battery (RFB) system, in both domain of Aqueous Organic RFB (AORFB) & NonAqueous RFB (NORFB) for Industrial Application.	NOCIL Limited	3 months (01 Oct 2022-31 Dec 2022)	5.46
7	Design, Development and Demonstration of 10 kWh/1kW Rechargeable Energy Storage System in Combination with Solar PV Charging: Vanadium Redox Flow Batteries (RBIC project)	ONGC Energy Centre Limited	2 Years (16 Aug 2019 to 15 June 2022)	388 (Completed)
8	Removal of Cl- from the sodium formate + sodium	Amber Chemicals and Pharmaceutical	6 months (01 Jun 2021 to 30 Nov 2021)	5.31

	chloride solution (RBIC project)	s Private Limited		
9	Development of High Performance and Low-Cost Boron-Doped Diamond Electrodes for Waste Water Treatment	Kapindra Precision Engineering Private Limited	2 Years (18 th May 2020 to 08 th Dec 2022)	3.0
10	Converting spent zinc-carbon and zinc based alkaline batteries into a source of nutrients in the manure	Tide Water Oil Company (India) Limited	3 Years (23 Mar 2020 to 22 Mar 2023)	20.82
11	Carbon materials development for battery	Labkarts	3 months (22 Mar 2021 to 21 Jun 2021)	2.00
12	Fuel cell reactor for H ₂ O ₂ production	Research Supporters India	1 Year (01 Jul 2019 to 31 Dec 2019)	1.50
13	Development of oxygen sensor and gas purification system	Elixir Electronics	1 Year (04 Feb 2019 to 29 Feb 2020)	1.18
14	Specific Power Consumption of KClO ₃ plant	Vaighai chemical industries limited	1 Year (01 May 2018 to 13 Oct 2018)	0.59
15	Colouring Project	Titan Company Ltd.	1 Year (01 Feb 2017 to 31 Dec 2017)	9.38
16	Novel method of directly converting rice husks (RH) to carbon-encapsulated, Nano- structured silicon (cnSi) for Li- ion Battery (LiB) Anodes	Maccaferri Environmental Solutions Private Limited	1 Year (01 Mar 2014 to 30 Sep 2015)	3.60

Invited talks and lectures

1. Title: Inside the Layered Lattice: Structure-Property Rules for Next Gen Li-ion Cathodes, 62nd Annual Convention of Chemists and the International Conference

	on Chemical Sciences for Net Zero Goals and Sustainability, Madras Christian
	College, Chennai, 18-20 th December
2.	Title: Reinforcing a Lithium-ion Battery Cathode (NCA) with Mn Doping, 12 th
	National Conference on "Recent Trends in Materials Science and Technology-
	2025", Indian Institute of Space Science and Technology, Trivandrum, 19 th
	December, 2025
3.	Title: Inside the Layered Lattice: Structure-Property Rules for Next Gen Li-ion
	Cathodes, 3 rd International Conference on Nanoscience and Nanotechnology, VIT
	Vellore, 16-19 th December 2025
4.	Title: Towards Practical Zn/I2 flow Battery, International Meeting of the Battery
_	Research Society, Bengaluru, 6 – 9 th December, 2025
5.	Title: Decoding Mn incorporation in NCA cathodes using multi-scale
	characterisations
	CeNS-Bengaluru, 10 th November, 2025
6.	Title: Decoding Mn incorporation in NCA cathodes using multi-scale
	characterisations
	SMC-Chennai Chapter Inauguration and Workshop at IIT Madras on 1 st
	November 2025.
7.	Title: High-Capacity Redox Flow Battery- Zn/I ₂
	3 rd International Conference on Smart Devices and Sustainable Energy, Ming Chi
	University of Technology, Taiwan between 15 th -17 th October,2025
8.	Title: Electro-basics of batteries and characterization.
	Renewable Energy and Storage Workshop/Symposium, Hatflied Campus,
	University of Pretoria, South Africa between 1 st - 3 rd October,2025
9.	Title: Reinforcing Li-ion battery cathodes with Mn doping of NCA battery
	National Symposium on Electrochemical Science and Technology (NSEST-
1.0	2025)", at SRMIST, Kattankulathur on 28 & 29th August, 2025
10.	Endowment Lecture Title: The breathing lattices: Alkali metal insertion and
	deinsertion in solid-state energy reservoirs.
	Inauguration of chemical society and Dr.S.V. Anantakrishnan endowment lecture
	at Anderson Hall, Madras Christian College, Department of Chemistry on August
- 44	25 2025.
11.	Title: Vanadium Redox Flow Battery Research using COMSOL Multiphysics
	COMSOL day Chennai, held at <u>Radisson Blu Hotel, Chennai City Centre</u> , July 18,
10	2025
12.	Title: Polymer Electrolytes for Aqueous Redox Flow Battery
1.0	Polymer Society Conference at Jeju Convention Centre, Korea, April 17, 2025
13.	Title: High-Capacity Aqueous Redox Flow Batteries, DGIST-Deagu, April
	15,2025

14.	Title: High- Capacity Redox Flow Batteries
	Yonsei University, Seoul, April 14, 2025
15.	Title: High- Capacity Safer Aqueous Flow Batteries
	5 th International Conference on Emerging Smart Materials in Applied Chemistry
	(ESMAC-2024) & 2 nd KIIT-CRSI Seminar on Modern Trends in Chemical
	Sciences in Collaboration with The National Academy of Sciences, India (NASI)
	Local Chapter, India between December 20-22, 2024
16.	Title: High- Capacity Aqueous Redox Flow Batteries
	Energy Summit 2024, held at Deakin University, Melbourne, Australia between
	26-29 November 2024.
17.	Title: Boron doped diamond coated graphite felt electrodes as corrosion free
	positive electrodes for energy storage systems.
	30 th International Conference & Expo on Corrosion held at Chennai Trade Centre,
	India between November 20-23,2024
18.	Keynote Lecture Title: Lithium Storage Capacity of van der Waals Gap in the
	Alternatives to Graphite, 4 th International Conference on Advanced Materials
	Synthesis, Characterisation and Applications held at Queensland University of
	Technology (QUIT), Brisbane, Australia, between September 25-27,2024.
19.	Title: Post Lithium Storage Envisioned with Aqueous Flow Batteries.
	International Conference on Frontiers in Electrochemistry: Innovations in
	Supercapacitors and Batteries held at Crescent Institute of Science and
	Technology, Chennai, between September 20-21,2024.
20.	Title: Post Lithium Storage Envisioned with Aqueous Flow Batteries.
	3 rd International Conference on Electrochemical Science and Technology-2024
	held at CSIR-NPL, New Delhi, between September 18-20,2024.
21.	Title: Lithium Storage Capability of Van der Waals Gap in the
	Alternatives to Graphite.
	The 13 th Bengaluru INDIA NANO 2024, organized by Department of Science &
	Technology, Government of Karnataka, Karnataka Science & Technology
	Promotion Society (KSTePS), and Jawaharlal Nehru Centre for Advanced
	Scientific Research (JNCASR) held at The Lalit, Bengaluru between August 1-
	3,2024
22.	Title: Faradaic and Non-Faradaic Contribution to the Capacity of Novel Organic
	Cathode of Li-ion Battery.
	International Conference on Energy and Environmental Materials (E2M-2024),
	organized by Department of Metallurgical Engineering and Materials Science,
	Indian Institute of Technology Indore between July 11 – 13, 2024

23.	Title: Lead an expert session on Microbial Electrochemical Technologies-
	Fundamentals and characterization tools.
	DST -SERB (Karyashala) workshop jointly organized by KSCSTE-CWRDM,
	Thiruvananthapuram, Kerala between July 5-11, 2024
24.	Title: Novel high voltage cathode, anode materials, and polymer electrolyte for Li-
	ion battery applications.
	SERB workshop on Advanced Energy Storage Materials and Device Fabrication
	organized at University of Calicut, Malapuram between May 27-31, 2024
25.	Title: Lithium metal/Lithium-ion Polymer Electrolyte Batteries.
	Asian Conference on Electrochemical Power Sources 12 (ACEPS-12), Osaka-
	Japan between May 19-22, 2024
26.	Plenary Lecture Title: Hydrogen Storage via Ammonia by Electrochemical
	Reduction of Nitrogen
	SERB Workshop on Green Hydrogen Production, Storage and Transportation: A
	Green Energy Prospective, School of Mechanical Engineering, VIT, Vellore
	between March 14-15 2024
27.	Title: One Redox Centre with Three Hats
	Post Lithium Storage Cluster of Excellence (POLIS), Online Seminar organized by
	Dr Johannes Schnaidt, Universitat Ulm, Germany, 28th February 2024
28.	Title: One Redox Centre with Three Hats
	18 th Asian Conference on Solid State Ionics (ACSSI)-2024 organized at
	Meenakshi College for Women on 22 nd February 2024
29.	Title: One Redox Centre with Three Hats
	International Conference on Advanced Functional Materials and Devices –
	2024 , organised by SRM University, Chennai between 26-28 th February 2024
30.	Title: Organic Redox Flow Battery Chemistries and Capacity Drop Mitigation
	Strategies
	Current Trends in Chemical Sciences organised by CRSI Madhurai Chapter at
	School of Chemistry, Madurai Kamaraj University between Feb 21 to 23, 2024.
31.	Title: Upending Current Ammonia Synthesis Method
	International Conference on Electrochemistry for Industry, Health and
	Environment (EIHE-2024), VIT Vellore, 8 th February 2024
32.	Title: High Energy and Power Density Redox Flow Battery Chemistries for Grid
	Storage
	Indo-German Centre for Sustainability (IGCS) Summar School 2023, The
	Integration of Renewable Energies into a Power Grid – A Key Contribution
	towards a Carbon Neutral Society, organized by TU Berlin, Germany and IIT
	Madras, India July 24 - August 4, 2023.
33.	Memorial Lecture Title: Electrochemistry on Storing Energy and Building
	Molecules

	Dr K S Rajagopalan Birth Centenary Memorial Lecture, Ramakrishna Mission Vivekananda College, Mylapore, Chennai, on 11 th October 2023
34.	Title: Electro valorisation
	DAE-BRNS 6 th National Workshop on Materials Chemistry (NWMC), BARC,
	Mumbai, 13-14, October, 2023 (Bronze Medal Lecture)
35.	Title: In-situ Regeneration of Energy Delivery in an Organic Redox Flow Battery
	30 th CRSI National Symposium in Chemistry (CRSI-NSC-30) organized by
	Jawaharlal Nehru University, New Delhi from February 3-5, 2023. (Bronze Medal
	Lecture)
36.	,
	Indo-French Workshop on Clean and Sustainable Energy Technologies
	(INFINITE), National Physical Laboratory-Delhi, 21-24, February, 2023
37.	
	Stationary Energy Storage India, Organized by IESA at Hotel Metropolitan-New
	Delhi, 17 th February 2023
38.	International Conference on "Future of Energy with Science and Technology"
	(FEST 2022) organized by Department of Chemistry, University of Delhi, New
	Delhi from December 29-30, 2022.
39.	Title: 1-2-1 Pathway: Electrically Refurbishing Organic Redox Couples for Energy
	Storage in Flow Battery
	IC-ECS-2023, Amrita Vishwa Vidyapeetham, Coimbatore, 23 rd June 2023
40.	Title: Two's Company or Crowd? The importance of being single for energy
	delivery
	Recent Advancements in Sustainable Electrochemical Processes (RASEP2023),
	TKM College of Engineering, Kollam, TEQIP II Sponsored Faculty Development
	Program, 9-10 th January 2023
41.	Title: DRT Analysis of Lithium Sulfur Batteries
	Wiley InfoMat Workshop in India: Current Status and Future Potential of Energy
	Technologies, on June 24th, 2022
42.	International Conference on "Recent Trends in Materials and Magnetism (RTMM-
	22)" organized by the Department of Chemistry, Loyola College (Autonomous),
	Chennai - 600034 from December 15-16, 2022.
43.	National Convention of Electrochemist (NCE) held at PSG Tech, Coimbatore
	between 26 th to 27 th July 2022
44.	Symposium entitled "Chemistry and Materials for New Batteries Technology"
	organized by Canadian Chemistry Conference and Exhibition (CCCE 2022) to be
	held from June 13 th – 17 th , 2022, in Calgary
45.	"Low-dimensional materials-2022" organized by IISER-Pune from 19 th -20 th May
	2022

46.	Amara Raja Award Lecture at the National Symposium on Electrochemical Science and Technology (NSEST-2021) organised by Electrochemical Society of India at Inorganic Physical Chemistry-IISc-Bangalore.
47.	Title: Sustainable Materials for Energy Storage Seminar Venue: National Centre for Nanoscience and Nanotechnology, University of Madras, Chennai, 16 th March 2020 (this seminar is organized by the Director of
	National Centre for Nanoscience and Nanotechnology, the University of Madras for the postgraduate students)
48.	Title: Catalysis on the surface of nanotubes having confined solvent media Conference details: Asian Consortium for Computational Materials Science: International Conference on Materials Genome (ICMG-2020), SRM University,
	Amaravathi, 5-7 th February 2020
49.	Title: Solvent Filled Multiwalled Carbon Nanotubes for Sensor and Battery
	Applications Conference details: Electrochemistry in Industry Health and
	Environment, BARC, Mumbai, 21-25 th January 2020 (organized by Indian Society
	for Electroanalytical Chemistry)
50.	Title: Ultra high energy efficient redox flow battery,
	Conference details: Frontiers in Materials Processing Applications, Research and
	Technology (FiMPART, Endorsed by Materials Research Society Singapore),
	Convention Centre, Ahmedabad, 15-17 th December 2019.
51.	Title: Low Field ¹ H NMR Investigations of Solvent Filled Multiwalled Carbon
	Nanotubes for Sensor and Battery Applications
	Symposium details: Solid State and Structural Chemistry Unit, Alumni
	Symposium 2019, Indian Institute of Science, Bangalore, 13 th December 2019.
52.	Title: Beyond Vanadium Redox Flow Battery: India Specific Solutions for Energy
	Storage
	Invited lecture details: Chemical Engineering seminar, Indian Institute of
	Technology Kanpur, 06 th November 2019
53.	Title: Tuning overpotential and electrolyte structure to realize high energy efficient
	redox flow battery
	Conference details: International Conference on Recent Trends in Chemistry of
	Materials (NCRTCM-2019), Bannari Amman Institute of Technology,
<i>5.</i> A	Sathyamangalam, 12 th October 2019
54.	Title: Materials for Electrochemical Applications
	Faculty development program details: STC on 2D Materials, ICSR Hall 3, Indian
	Institute of Technology Madras, Chennai, 23 rd September 2019

55.	Title: Tuning overpotential and electrolyte structure to realize high energy efficient
	redox flow battery
	Conference details: Recent Advances in Materials Science for Sustainable
	Development-2019 (RAMSSD-2019), VFSTR (Deemed to University), 1 st
	September 2019
56.	Title: Enhanced Electrochemical Sensing of Endohedral Carbon Nanotubes,
	Symposium details: Chemistry in-House Symposium (CiHs), Indian Institute of
	Technology Madras, Chennai, 21 st August 2019
57.	Title: A New Process for Quick Fabrication of Dye-Sensitized Solar Cells
	Invited lecture details: SSN College, Kalavakkam, Chennai, 16th March 2019
58.	Title: Strategic Partnership with IIT Madras and Joint Workshop
	Indian Institute of Technology Madras, Chennai
	11-13 th July 2018
59.	Title: Modification of Graphite Felt Electrodes for Vanadium Redox Flow Battery
	Application
	Workshop details: Indo-German Joint Scientific Workshop on Membranes for
	Water and Energy, CSIR- Central Salt and Marine Chemicals Research Institute
	(CSMCRI), 18 th -20 th February 2019
60.	Title: Recent Developments in Redox Flow Battery Chemistry
	Conference details: Advanced Nanomaterials for Energy, Environment and
	Healthcare Applications (ANEH – 2019), Bishop Heber College, Trichy, 05 th
	February 2019
61.	Title: Stable Radical Ion Based Redox Flow Battery
	Seminar details: ChEMS Seminar, Chemical Engineering and Materials Science,
	Michigan State University, 15-16 th October 2018
62.	Title: Metal-air batteries
	Seminar details: HP Green R&D Centre, Bangalore, 9th March 2018
63.	Title: Our Recent Experience with Redox Flow Batteries
	Invited lecture details: CSIR-CECRI (Council of Scientific & Industrial Research -
	Central Electrochemical Research Institute), Karaikudi, 20 th September 2018
64.	Title: Organic Materials for Energy Science: DFT Guided Molecular Engineering
	Approach
	Materials Design and Energy Materials: Computational Approach
	Seminar details: SRM Institute of Science and Technology, Chennai, 5 th February
	2018
65.	Title: Synthetic and Bio-derived Nanostructures for Selective Sensing of Biotinyl
	Targets
	Symposium details: Symposium on Materials in Chemistry & Biology, Indian
	Institute of Technology Gandhinagar, Gujarat, 5 th January 2018.

66. Title: Metal Organic Framework and Organic Framework Built on Carbon Nanotubes by π-π
Interaction for Electrochemical Applications
Conference details: CEAMCR-2018, DAE Convention Centre, Anushaktinagar, Mumbai, 15-17th February-2018
67. Title: A Strategy of Enhancing the Surface Plasmon Assisted Light Harvesting in Dye Sensitized Solar Cells
Conference details, National Convention of Electrochemist (NCE-19), National Institute of Technology –Trichy, 28 - 29th March 2016
68. Title: Non-precious metal catalysts for fuel cell application
Conference details: INDO-US ECM-2013, Banaras Hindu University, Varanasi, 26 -28th February 2013
69. Title: Non-precious metal catalyst developed by freeze-dry method
Conference details: Recent Advances in Electrochemical Energy Materials and Devices, Indian Institute of Science (IISc) Bangalore, 24-25th July 2012

ECS-IITM Student Chapter Mentoring for Outreach Activities

As a faculty advisor of the ECS-IITM student chapter organized and conducted several outreach activities. They are listed below.

- (i) ECS-IITM Student Chapter Inaugural Event and Workshop December 10, 2022.
- (ii) A study tour was organized for student chapter members and IIT M.Sc students on December 30, 2022. Students visited the International Advanced Research Centre for Powder Metallurgy and New Materials at IITM Research Park to understand fuel cell making.
- (iii) Conducted the fastest finger quiz competition alongside a three-day international conference on energy conversion and storage (IECS-2023) between January 18-20, 2023.
- (iv) ECS-IITM Student Chapter along with SRM University, conducted a twoday workshop on "Electrochemical Techniques for Next Generation Batteries" with hands-on activities on batteries and supercapacitors. Conducted quiz competition as part of the workshop.
- (v) Organized eminent lecture series through the ECS-IITM student chapter. The first speaker of this series was Prof. Werner Paulus from the University of Montpellier, France, on April 19, 2023.
- (vi) Conducted a workshop on "Biosensors and Electroanalytical Techniques" on June 27, 2023, with Prof. Sadagopan Krishnan, Oklahoma State University, USA. Conducted hands-on finite/infinite diffusion experiments with

- impedance and rotating disk electrodes and electrochemical sensing of dopamine.
- (vii) Organized a lecture by Prof K Vidyasagar on "Structural correlations of nonmolecular solid-state energy materials" on September 5, 2023, as part of Teacher's Day celebrations
- (viii) Conducted an Indo-Korean workshop at Terrace Hall between September 20-21, 2023. Performed hands-on sessions with zinc-bromine battery, fuel cells, electrochemical impedance spectroscopy, rate constant calculations using Tafel slop, and the making of reference electrodes.
- (ix) A workshop on Electro Sustainability conducted on December 5, 2023, as part of the Energy Summit 2023 conference.
- (x) A workshop on "Symmetry Elements and Structure Solving" by Prof Werner Paulus, U. Montpellier between 12 to 16th Jan at IIT Madras
- (xi) Organized guest lecture on "Low-T oxygen diffusion questioning long-range oxygen, electronic and domain ordering in non-stoichiometric Transition Metal Oxides" through the ECS-IITM student chapter. The speaker of this series was Prof. Werner Paulus from the University of Montpellier, France, on January 17, 2024
- (xii) A Workshop on "Electrochemical Characterization of Batteries" conducted at NIT Trichy Campus on January 22nd and 23rd 2024.
- (xiii) A Symposium and workshop on "Batteries" conducted on 23rd and 24th February to felicitate Prof A K Shukla (IISc Bangalore) for his seminal contributions to the electrochemistry. The plenary speakers are Prof. Werner Weppner (University of Kiel, Editor of Ionics) and Prof. V Thangadurai (U. Calgary, Associate Editor of ACS Applied Materials & Interfaces and J. Materials Chem. A). Besides, many invited speakers from across the country graced the occasion.
- (xiv) A workshop on "Computational Electrochemistry- Fundamentals and applications" which highlights the basic principles and applications of DFT was conducted at IIT Madras on July 8th and 9th 2024.
- (xv) Two days workshop on "Prospectus for Li-ion batteries and Emerging Electrochemical Energy systems" was conducted in collaboration with PSG Institute of Advanced Studies, Coimbatore and Biologic Science Instruments at PSG Institute of Advanced Studies, Coimbatore on July 29th and 30th 2024.
- (xvi) Organized lectures by Prof. S. Sankararaman and Prof. Parasuraman Selvam on September 5, 2024, as part of Teacher's Day celebrations.
- (xvii) Two days workshop on powering the future: Innovations in Lithium-ion Battery Technology was conducted in collaboration with Metrohm India Pvt Ltd, at Centre for Research, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu

- (xviii) Three days hands-on training workshop on characterization of electrified interfaces in batteries and supercapacitors, organized at Vellore Institute of Technology, Tamil Nadu between November 13- 15 2024.
- (xix) Two days interactive workshop on electrochemical technologies: Emphasizing Batteries, Supercapacitors, and Fuel cells, organized at Vellore Institute of Technology, Tamil Nadu between December 5- 6 2024.
- (xx) Indo-Korea Workshop on Batteries and flow batteries, organized at IIT Madras on January 30, 2025
- (xxi) Two days workshop on Electrochemical Energy Systems: From Fundamentals to Fabrication (A skill development Program) Battery Technology was conducted in collaboration with Centre for Advanced Materials Research Innovation and Technology, Department of Physics and Electronics, CHRIST University, Bengaluru between March 7-8 2025.
- (xxii) Hands-on Session on Fabrication and Characterization of VRFB, Electrolysers and Fuel cells, Cell fabrication and Electrical Characterization of Zn-Ion batteries in collaboration with Small Sciences Symposium by IITM, held between June 11-12 2025, IIT Madras
- (xxiii) Organized lectures by Prof. Sangaraju Shanmugam on July 21 2025, on Flow batteries
- (xxiv) Organized lectures by Dr. Shrisudersan on August 07 2025, on "Supercapacitors; From material inventions to product development"
- (xxv) Organized a preconference workshop at ICSTEE 2025, PSGIAS, Coimbatore

News on our Activity in Magazines:

ECS News & newsletters – Coverage of IIT Madras ECS Student Chapter activities and awards (2023–2025).

- o https://www.electrochem.org/ecsnews/tag/ecs-chapters-of-excellence/
- o <u>https://92bf4c7f-630d-4eed-</u>

93d95b7f44edb047.filesusr.com/ugd/304cb8 7e71e7c79e864954a8468b6f4949fed9.pdf

- o https://92bf4c7f-630d-4eed-93d9-
- 5b7f44edb047.filesusr.com/ugd/304cb8 8a1a5d24710047259c2e56f5bcbc0ea4.pdf
- o https://92bf4c7f-630d-4eed-93d9-
- 5b7f44edb047.filesusr.com/ugd/304cb8 b6891d93fe9e4576bc4e4bca9a255666.pdf
- o https://92bf4c7f-630d-4eed-93d9-
- 5b7f44edb047.filesusr.com/ugd/304cb8 f73f1e4c26e54c24ae0b6385fc52e4f5.pdf

News about our research

- o https://tech-talk.iitm.ac.in/a-new-class-of-battery/
- o <u>https://twitter.com/iitmadras/status/1631195298872840192?t=S36XIIWYi5nddJsp7n3AKw&s=08</u>
- o <u>https://www.thehindubusinessline.com/business-tech/iit-m-scientists-develop-improved-flow-battery-technology/article66847902.ece</u>

- o <u>https://www.thehindubusinessline.com/business-tech/ammonia-from-used-batteries/article36929429.ece</u>
- o <u>https://www.thehindubusinessline.com/business-tech/putting-rooftop-solar-to-many-good-uses/article64577772.ece</u>
- o https://www.pressreader.com/india/the-hindu-business-line/20220425/281956021344451
- o https://www.iastoppers.com/articles/can-flow-batteries-support-india-s-renewable-energy-pivot
- o https://techindiaexpress.in/can-flow-batteries-support-indias-renewable-energy-pivot/

Technology Contribution

• Developed a standalone 10kW/0.1MWh Vanadium Redox Flow Battery, in partnership with High Energy Batteries (I) Ltd. Trichy and with OECT (ONGC energy centre trust), VRFB for EV charging station.

A photograph of 10kW/0.1MWh system developed with HEB for ONGC-Energy Trust Centre

- Developed 10kWh/1.4kW Vanadium Redox Flow Battery Energy Storage System, which is under field trial at High Energy Batteries (I) Ltd. Trichy. The technology is transferred to ONGC.
- Catholyte (DABr₃.HBr with AQDS Anode) Material for Aqueous Acidic Flow Battery, Indian Patent Application No. :202241042107. Kothandaraman R and Vivekandanda M

Above IP licensed to Archean Chemical Industries Limited for 50 Lakhs + 2% Royalty.

Technology transfer ceremony can be viewed at:

https://twitter.com/iitmadras/status/1631195298872840192?t=S36XIIWYi5nddJsp7n3

AKw&s=08

• Jointly Developing 10kWh Indigeneous Zinc-Bromine Redox Flow Battery with Archean Chemical Industries Limited.

• Our Technology for Repurposing Waste Battery Materials into Battery Electrodes Won Third Prize in New Generation Ideation Contest 2022 Conducted by Hindustan Petroleum Corporation Limited.

Standalone 5kW/10kWh flow battery stack (Developed with ONGC funding with industry partner High Energy Batteries I Ltd.) charging two wheeler show cased in Indi Energy Week held in Goa between 6th-9th February 2024

NPDF Projects and Other Grant Details of Our Group

S.No	Title of the Project/ Agency	Amount (Rs. In lakhs)	Scholar Name	Start date	Duration
1.	Women Leading IITM	2.1	Ms.Sravani	April 2024	6
	2024 / IITM		Potham	to	months
				September	
				2024	
2.	Women Leading IITM	2.1	Mrs. Priya.V	April 2024	6
	2024 / IITM			to	months
				September	
				2024	
3.	Women Leading IITM	1.05	Ms. Richa	April 2024	3
	2024 /IITM		Gupta	to June	months
				2024	

4.	Rational Design and Development of Large- Area Perovskite Solar Cells / (SERB-TARE Fellowship)	10.05	Dr. G Murugadoss	14-10-2022	3 Years (ongoin g)
5.	Borophene: A novel two- dimensional graphene-like material for future energy storage applications / (SERB-NPDF)	22.37	Dr. Anandhakumar Sukeri	01-03-2022	2 years
6.	Women Leading Innovation 2022 / IITM	2.1	Dr. Sumana B	01-03-2022	2 years
7.	Light induced process of Hierarchical electron cascade system, Materials and Devices for Solar energy conversion / (Teachers Associateship For Research Excellence- TARE)	10.05	Dr. M. Asha Jhonsi	14-11-2018	3 Years
8.	Enhanced photovoltaic performances of dyesensitized solar cells sensitized with triphenylamine/phenothiaz ine-oxindole/dithienobenzotriz ole based dyes / SERB-NPDF	17.02	Dr. Selvam (NPDF)	21-06-2017	2 Years
9.	Permselective membrane and polymer/garnet electrolyte for Li-S batteries / SERB-NPDF	19.2	Dr. M. Raja	21-09-2017	2 Years
10	Electroorganic Modifications of Graphene into Redox-mediator-cum- Substrate to Immobilize Glucose	19.2	Dr. P. Gayathri	08-06-2016	2 Years

Oxida	se/Cholesterol		
Oxida	se for Bio-sensor		
Applic	ations / SERB-		
NPDF			

S. No	Name of the	Title of the thesis	Current affiliation	Year of
5.110	scholar	Title of the thesis		graduation
1	Dr. M. P	Metal-nitrogen-carbon	Chemist (Group B	2016
	Karthikayini	(MNC) based non-precious	Gazetted Officer),	
		metal catalysts for	Department of	
		electrochemical reduction	Industries and	
		of oxygen in fuel cells	Commerce,	
			Government of Tamil	
			Nadu, Guindy,	
			Chennai	
2	Dr. Anjaiah	Metal-organic complexes	Assistant Professor,	2017
	Sheelam	and carbon materials	NIT Warangal	
		derived from metal-organic		
		complexes for oxygen		
		reduction reaction in		
		alkaline medium		
3	Dr. T.	Cobalt and nitrogen doped	Manager, Renewable	2017
	Thirupathi	carbon materials for	energy systems	
		rechargeable zinc-air battery	limited, Hyderabad	
		and carbon supported g-		
		C ₃ N ₄ for hydrazine sensor		
	2 16	applications		2017
4	Dr. M.	Studies on certain aromatic	Scientist of Energy	2017
	Veerababu	diimides and conjugated	Technology Division,	
	(Co-guided)	carboxylates as electrode	Godi India Pt. Ltd,	
		materials for secondary	Hyderabad	
		lithium/sodium-ion battery		
	D. D.1. 1	applications Towns Towns 12: 10 March 1	A suistant D. C	2017
5	Dr. Rakesh	Ternary Transition Metal	Assistant Professor,	2017
	Verma	Oxides and Sulphides as New Anode Materials for	Central University of	
	(Co-guided)		Allahabad- Uttar	
		Rechargeable Alkali Metal	Pradesh 211002	
		Ion (Lithium and Sodium)		
		Battery Applications		

6	Dr. P Vasudeva	Studies on new electroactive	Manager, R&D Li-ion	2018
	Rao	fluids and catalysts for	Battery Technology,	
		redox flow batteries and	Amara Raja Batteries	
		membrane less fuel cells	Limited, Hyderabad,	
		1000 1000 1000 1000	Telangana	
7	Dr. Sudip	Molecular Engineering for	Assistant Professor	2019
	Mandal	Dye-Sensitized Solar Cells	(Senior Level),	
	111111111111111111111111111111111111111	and Chemo sensors: An	Division of Chemistry,	
		Experimental and	Department of	
		Computational Approach	Sciences and	
		companional ripproach	Humanities, Vignan's	
			Foundation for	
			Science, Technology	
			and Research (Deemed	
			to be University),	
			Guntur, Andhra	
			Pradesh	
8	Dr. Divya Unny	Carbazole, phenothiazine	-	2022
	Di. Divya Cimy	and triphenylamine based		2022
		organic dyes with different		
		push-pull architecture for		
		dye-sensitized solar cells		
9	Dr. Ramavath	Boosting the energy density	Assistant Professor	
	Janraj Naik	of aqueous supercapacitor	,Sri Venkateswara	
	,	through the multitude of		2022
		approaches and	University	
		development of eco-benign		
		membrane/binder materials		
10	Dr. Tamil Selvi	Electrochemical sensors and	Postdoctoral scholar at	2022
	G.	electrocatalytic production	The University of	
		of ammonia.	Texas at Austin, USA	
11	Dr.M. R.	Tweaking the redox-active	Postdoc (AvH Fellow)	2022
	Chinmaya	organic material properties	at Ulm University,	
		and electrode engineering	Germany	
		for rechargeable battery		
		applications		
12	Dr. Yashwant	Nickel and Copper-based	Postdoc at IIT Bombay	2022
1	Pratap Kharwar	electrocatalysts and	* '	- -
	1	nitrogen-doped carbon		
		support for platinum		
	1			

		nanoparticles for the oxygen reduction reaction in the energy conversion systems		
13	Dr.Sumana B	Activated carbon-based electrode materials with iodine/iodide redox-active ionic liquid and solid-state electrolyte for the supercapacitor applications	Postdoc at Brunel University London	2022
14	Dr.Dipsikha Ganguly	Development of electrode materials and technique for efficient energy storage and conversion devices	Volt14 Solutions, Singapore	2023
15	Dr.Vivekananda Mahanta	Electrode Engineering for Vanadium and Exploring Endurance of Alternative Redox-Active Materials for Aqueous Acidic Redox Flow Battery	Postdoctoral scholar, ULB Brussels	2023
16	Dr. Kandregula Ganapathi Rao	Studies on light sensitive devices and aqueous asymmetric supercapacitors	Assistant manager at Amararaja batteries	2023
17	Dr. Harun Khan	Vanadium and Organic redox flow batteries	Head of energy storage and battery research- ARKLE Energy Solutions	2024
18	Dr. Priya V	Zn-ion batteries and organic redox flow batteries	Assistant Professor at University of Calicut	2024
19	Dr. Sravani Potham	Supercapacitors	Associate Scientist at GODI India Pvt Ltd.	2024
20	Dr. Richa Gupta	Zn-ion batteries	-	2024
21	Dr. Sandeep Mohapatra	Organic redox flow batteries	-	2025
22	Dr. Nivedha L. K.	Zinc-Air batteries	Scientist, Archean Chemicals	2025

Current PhD Students

S. No.	Roll No./Name	Tentative title/ Area of research	Status	Expected Year of Completion
1	CY20D045/ Mohana Priya	Li-ion batteries	6 th Year	2025
2	CY20D049/Swati Panigrahi	Li-ion batteries and electrochemical reduction of nitrogen	6 th Year	2025
3	CH20D021/Anoop N	Electrochemical CO ₂ reduction	5 th Year	2025
4	CY21D048/ Nikhil G Mohan	Electrochemical reduction of nitrogen and theoretical work	5 th Year	2026
5	CY21D074/ Abhilipsa Sahoo	Aqueous organic redox flow batteries	5 th Year	2026
6	Megha Bala/ CY22D053	Lead flow batteries	4 th Year	2027
7	Rubi/ CY22D013	Zn-Iodine flow batteries	4 th Year	2027
8	Santhoshini/CY23D038	Na-ion batteries	3 rd Year	2028
9	Mathru Naik/CY23D099	Li ion batteries	3 rd Year	2029
10	Sripadha Shekhar/CY24D060	Electrochemical reduction of nitrogen	2 nd Year	2029
11	Manavi/CY24D061	Zn-ion batteries	2 nd Year	2029
12	Vansh Butani/CY24D062	Na- ion batteries	2 nd Year	2029
13	Shakthi/CY24D059	Li ion batteries	2 nd Year	2029
14	Aneena simon/CY24D058	Redox flow batteries	2 nd Year	2029
15	Joel Baskar/CY24D065	Li ion batteries	2 nd Year	2029
16	Sandeep Kumar/ CY24D021	Li-S batteries	2 nd Year	2029
17	Sundaravalli / CY24D106	Flow Batteries	1 st Year	2029

18	Deeksha Varshney/ CY25D001	Electro-organic synthesis	1 st Year	2030
19	Kathir/ CY25D075	Li-ion batteries	1 st Year	2030

Notable Achievements of my Students			
Name / Roll. No.	Achievement		
Dr. Richa Gupta	Professor Ramamurthy Award for the best Ph.D. Thesis in Chemistry for the academic year 2024 – 2025		
Dr. Priya V	Institute Research Award – 2023 (it carries a cash prize of Rs 20,000 and a citation from IIT Madras) for her outstanding PhD work		
Dr Vivekananda Mahanta	Best Thesis Award 2023 - Langmuir Prize		
Dr. Kandregula Ganapathi Rao	Institute Research Award – 2022 (it carries a cash prize of Rs 20,000 and a citation from IIT Madras) for his outstanding PhD work		
	Professor Ramamurthy Award for the best Ph.D. Thesis in Chemistry for the academic year 2023 – 2024		
Dr. Dipsikha Ganguly	Keshav Rangnath Excellence in Research Award (it carries a cash prize of Rs 20,000 and a citation from IIT Madras) for her outstanding PhD work		
Dr. Chinmay Mirle	Presented a oral presentation on invitation in Junior National Organic Chemistry Symposium (JNOST-22), School of Chemistry, University of Hyderabad, held between Jan 06-09, 2022 Best Ph.D thesis award in 2022		
Dr. Sumana Brahma	Young Scientist award in the 40 th Annual Conference Indian Council of Chemists, Hyderabad (Dec 2021)		
Dr. Tamil Selvi G.	 DST Selected her to attend 13th HOPE Meeting (Meeting of Nobel Laureates) organized by the Japan Society for the Promotion of Science in March 2022 for her outstanding research work. She is one among 9 chosen for this honour. Young researchers selected from various countries to engage 		

	 in interdisciplinary discussions with Nobel laureates and other distinguished scientists. Institute Research Award - 2020 Society of Materials Chemistry (BARC) Emerging Scientist Award-2024
Dr. Jagadeeswari S	 SERB-NPDF poster competition award -2020 by DST-SERB Best young women award by Genesis of Educational Impressions -2021
Ms. Vanshika Jain	Best M.Sc thesis award in 2018