PhD Seminar II

Daya V P (CY10D028) Venue: via Zoom

Impact of carboxylate alkyl chain length and anions on the structure, spectroscopy and O_2 reactivity of cobalt(II) complexes

The active-site centers of metalloenzymes containing polynuclear transition metal-ions (Fe, Mn, Ni, Cu) are known to activate small molecules (O_2 , H_2O , N_2 , N_2O , etc), stabilize high-valent metal-oxygen intermediates and cause oxidation catalysis. This has intrigued bioinorganic chemists to mimic and design industrially useful catalysts.¹ The diiron and tetramanganese active-sites, bridged by carboxylate and supported by histidine ligands, have caught recent attention.² Synthetic modelling studies using a combination of tripodal pyridylalkylamine and carboxylate or carboxylate-appended N-ligands, have served as excellent platforms to reproduce some of the active-site features of Fe and Mn centers. The analogous studies with cobalt or other metals are scarce and often produced 1D-polymers.³ Besides, a systematic study of carboxylate-appended N-ligands with variable alkyl chain length of carboxylate arm and the influence of anions of cobalt(II)-salts, on the structure, spectroscopy and O_2 reactivity is sporadic.⁴

Here, we have synthesized a series of carboxylate-appended bispicolylamine ligands having methylene (L¹), ethylene (L²) and propylene (L³) alkyl linkers between the carboxylate and tertiary amine-nitrogen and studied the influence of alkyl chain length and anions (Cl⁻, N₃⁻, ClO₄⁻, BPh₄⁻, BArF₂₄⁻) of different cobalt(II)-salts on the structural diversity, spectroscopy and O₂/H₂O₂ reactivity of Co(II) complexes. The alkyl chain length and anions controlled the metal topology and nuclearity from mono-, di- tri- and tetranuclear structures, as established by X-ray structure and a combination of spectroscopic techniques. O₂ reactivity provided metal- and ligand-based oxidation products, different from a related study.⁵ In this presentation, results of these investigations, highlighting the impact of alkyl tether length, anions and solvent, on the structure, nuclearity (Co_n, n = 1-4), spectroscopy (FT-IR, UV-vis, ¹H-NMR, ESI-MS) and magnetism of Co(II) complexes, and reactivity studies, will be presented.

- 1. Jasniewski, A. J.; Que, L., Jr., Chem. Rev. 2018, 2554.
- 2. Christou, G., Acc. Chem. Res. 1989, 328.
- 3. Lucas, N. T. et al., CrystEngComm, 2015, 2974.
- 4. McKenzie et al., Dalton Trans., 2011, 10698.
- 5. Anjana, S.S.; Varghese, B.; Murthy, N.N., Dalton Trans., 2020, 3187.

Signature of Guide

Signature of Coordinator

Date: 31-03-2021 Time: 3:30 pm