Curriculum Vitae

Dr. KOTHANDARAMAN Ramanujam Professor, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, email: <u>rkraman@zmail.iitm.ac.in;</u> <u>rkraman@smail.iitm.ac.in</u>

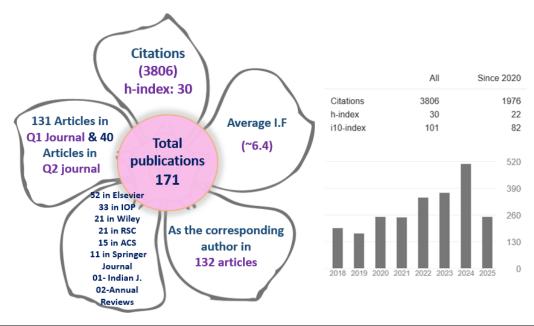
Phone: 044 2257 4249 and 9444231700

Research Interests: Hydrogen storage by electrochemical reduction of nitrogen; Metal-ion batteries; Development of organic dyes and hole-transporting materials for dye-sensitized solar cells (DSSC) and perovskite solar cells; Electrode materials and novel redox couples for flow battery; Electrode materials for oxygen reduction reaction in alkaline and acidic medium (Zn-air and polymer electrolyte membrane fuel cells); High energy density supercapacitor materials; Sensors for biologically important molecules; photo rechargeable batteries; Electroorganic synthesis.

Education and	1 Training
March 2009-	Post-Doctoral Researcher, with Prof. Christina Bock and Prof. Barry
Feb 2011	MacDougall Group, National Research Council of Canada, Ottawa,
	Canada
March 2007 -	Post-Doctoral Researcher, with Prof. Scott Calabrese Barton Group,
Feb 2009	Michigan State University, East Lansing, MI, USA
October	Research Associate, with Prof. S Sampath group, Inorganic and Physical
2006-Feb	Chemistry Unit, Indian Institute of Science Bangalore, India
2007	
July 2006-	A short visit to University of Cagliari, Italy (Prof. Giacomo Cao's group)
September	
2006	
June 2006	Ph.D. Thesis title: Studies on Direct Methanol and Direct Borohydride
	Fuel Cells. Supervisor: Prof. Ashok Kumar Shukla
	Indian Institute of Science Bangalore, India
May 2000	M. Sc in Applied Chemistry
	Anna University, Chennai, India
May 1998	B. Sc in Chemistry
	Bharathiar University (Sri Vasavi College) (University 1 st Rank Holder,
	Gold medalist), Coimbatore, India

Employment History and Dates		
July 2021-	Professor	
Present	Department of Chemistry, Indian Institute of Technology Madras, India	

June 2016-	Associate professor
June 2021	Department of Chemistry, Indian Institute of Technology Madras, India
March 2011-	Assistant professor
June 2016	Department of Chemistry, Indian Institute of Technology Madras, India


Honors a	nd Awards		
2025	ASC-Masila Vijaya Award -	The Academy of Sciences, Chennai	
	2024 (for innovative patent)		
2024	IESA Researcher of the year-	India Energy Storage Alliance (IESA)	
	2024		
2023	SMC Bronze Medal – 2023	Society of Materials Chemistry, BARC, India.	
2023	CRSI Bronze Medal – 2023	Chemical Research Society of India	
2023	Australia Awards Fellowships	Department of Foreign Affairs and Trade	
	to collaborate with U. Sydney		
2023	TREND SETTER GRANT	The Energy Consortium, IIT Madras	
	AWARD-2023		
2023	CSR Changemaker Award-	IIT Madras	
	2023		
2021	Amara Raja Award-2021	Electrochemical Society of India, Bengaluru	
2019	Visiting Professorship	Energy, Environmental & Chemical	
		Engineering Department, Washington	
		University @ St. Louis, Missouri	
2020	Fellow of the Royal Society of	RSC	
	Chemistry (2020)		
2020	Fellow of the Academy of	Academy of Sciences, Chennai	
	Sciences, Chennai		
2000	Gold Medallist in BSc,	Bharathiar University, Coimbatore	
	University 1 st Rank holder		

Scient	Scientific Leadership		
1.	Vice president for Society for Advancement of Electrochemical Science and		
	Technology Karaikudi – 2023-24		
2.	Vice President of Indian Society for Electroanalytical Chemistry (ISEAC)		
	for 2021-24, BARC, Mumbai		
3.	Council Member of Electrochemical Society of India, IISc, Bangalore		
	(2023-24)		

4.	Director nominated member of Board of Industrial Consultancy &	
	Sponsored Research-IIT Madras (2023-2024)	
5.	Director nominated department representative for the Faculty Council of the	
	Research Park of IIT Madras (since July 2019)	
6.	Member of Board of Global Engagement, IIT Madras, Since 2020	
7.	Member of institute purchase committee of IC&SR-IIT Madras, Since 2023	
8.	Department-nominated member of the Board of Placement for the year	
	2018-2019	
9.	Core expert panel member of the DST call "Research and Development of	
	Technology & Demonstration of Off-Grid / Edge-of-Grid, Access to	
	Electricity in SC/ST Dominant Area" between 2024-2027	
10	Shareholder in M/s Indus DC Innovation Private Limited and inventor for	
	the Redox Flow Battery Technologies explored by the company.	
11.	Honorary scientific advisor for Kapindra Precision Engineering Pvt. Ltd.,	
	Research Park, IIT Madras	
12	Faculty Advisor and initiator of The Electrochemical Society - Indian	
	Institute of Technology Madras Student Chapter (since 2022).	
	https://www.ecsiitm.com/	
	Activities of student chapter are listed separately. Photographs of the events	
	conducted can be viewed at https://www.ecsiitm.com/gallery	
13		
	"Interface" published by ECS-USA	
	(https://iopscience.iop.org/article/10.1149/2.009231IF).	
1.4	https://iopscience.iop.org/article/10.1149/2.009233IF/pdf	
14.	Our student chapter is recognized as Chapter of Excellence for 2023 by ECS	
15	https://www.electrochem.org/ecsnews/tag/ecs-chapters-of-excellence/ Our chapter in association with the Electrochemical Society of India (ECSI),	
15	Bengaluru, a monthly webinar series was conducted online for the benefit of	
	the students	
16		
10	Photovoltaics" from J. Photochemistry and Photobiology	
17		
17	Storage in China 2021	
18		
	contribution of Prof A K Shukla's (Emeritus professor, IISc Bengaluru)	
	contribution to the electrochemical energy systems	
19		
	&Storage-2025 special issue (2025) in Small, Advanced Sustainable	
	Systems and Batteries & Supercaps	
20	0 Guest Editor for the special collection on redox flow batteries (2025) in the	
	Guest Editor for the special collection on redox flow batteries (2025) in the	

21	Co-chaired and conducted the MRSI-AGM conclave symposium "Batteries,
21	fuel cell, and supercapacitor" between Dec 20-23 ^{rd,} 2021.
	https://www.mrsi.org.in/agm2021/conference-committees.php
22	
	Convenor of the international conference on energy storage and conversion (UECS 2022) hold on 18 20 2022 at UTM Besserab Bark
	(IECS-2023) held on Jan 18-20, 2023 at IITM Research Park.
22	https://www.ices2023.com/scientific-committee
23.	
	2023 at IIT Madras. https://energyconsortium.org/energysummit2023/
	Member of the Board of Studies of PSG College of Technology, Coimbatore
25.	Adjunct faculty at National Centre for Catalysis Research, IIT Madras,
	Chennai (Since 2012)
26	Delivered NPTEL+ lectures on EV Cohort (offered 3 times in the last one
	and half year; most sought after course among the industry professionals)
27.	Delivering NPTEL+ course on Battery Technology for Industry
	Professionals
28	Book Chapters Contributed
	1. R. Kothandarman, Ramavath Naik and L.K. Nivedha "Advanced
	Technologies for Rechargeable Batteries" (Volume II): Zinc-ion Batteries:
	Materials to Mechanism of Energy Storage, Taylor and Francis-CRC Press,
	2023, In Press.
	2. R. Kothandaraman and Chinmay M.R. Advanced Technologies for
	Rechargeable Batteries" (Volume 1): Aqueous Acidic Redox Flow Battery
	Chemistries, Taylor and Francis-CRC Press, 2023, In Press.
29	Honorary Adjunct Faculty at Atria University, Bengaluru for mentoring their
	Centre of Excellence on Energy
30	Visited Prof. Antonio Tricoli, U. Sydney using Joint Funding Bilateral
	Mobility Program of IITM Dean-Global Engagement between 6 th - 12 th
	September 2023 for initiating research collaboration between IITM and U.
	Sydney
31.	Visited U. Sydney along with a delegation of IITM between $12^{th} - 26^{th}$
	November 2023 using Australia Award Fellowship of Department of
	Foreign Affairs and Trade (DFAT)-Australia.
32	
	facilities (2024) (from Tendering to Installation): HRTEM, NMR, SC-XRD,
	ICP-OES, GC-MS, Confocal Raman, ITC, HRMS, BET Surface Area
	Analyser
33	Department nominated member of Project Implementation Group for "Fund
	for Improvement of S&T Infrastructure in Universities and Higher
	Educational Institutions (FIST-2024)"
34	Part of the International SDG Collaboration Program 2024 awarded by
5-1	the Office of Global & Research Engagement of U. Sydney for research
	collaboration between U. Sydney, IIT Madras, Anna University and IIT
	Bombay
	Domoay

	Project title: Research and Translation Hub for Environmental Remediation
	Technologies
35.	Convenor of the international conference on energy storage and conversion
	(IECS 2.O-2025) held on Jan 27-29, 2025 at ICSR-IITM.
36	Visited Ming Chi University of Technology, Taiwan and delivered a talk
	on "Polymer electrolytes for alkali-metal ion and high-capacity aqueous
	flow battery", February 2025 and discussed MoU for joint degree program
	at Ming Chi University of Technology, Taiwan
37	Visited South Korea and gave lectures in Yonsei University, DGIST-
	Daegu and South Korea Polymer Society Conference at Jeju Convention
	Centre at the invitation of South Korea Polymer Society and Department
	Chair of DGIST (visit between April 11 to April 20, 2025)
38.	Visited PSGIAS, Coimbatore to participate in a meeting as a member of
	Research Advisory Board on April 26, 2025
39	Appointed as Adjunct Faculty at University of Southern Queensland,
	Australia for three years from May 1, 2025

Peer-Reviewed Publications: Primary Research

171. Esackraj Karthikraja, Naga Venkateswara Rao Nulakani, Pandiarajan Devi, Palanichamy Murugan, Kothandaraman Ramanujam, VG Vaidyanathan, Venkatesan Subramanian, First-principles insights into biphenylene-based graphynes: promising novel two-dimensional carbon allotropes for thermoelectric applications, *Journal of Chemical Sciences*, **2025**, 137:29 DO1: <u>https://doi.org/10.1007/s12039-025-02361-2</u>

170. Camillie Syiemlieh Collinica, Ilango Bhuvaneesh, Kothandaraman Ramanujam, Venkatakrishnan Parthasarathy, Velusamy Marappan, Kathiravan Arunkumar, Delving into the Role of a Conjugated Rhodanine Acceptor in D–D'–A Dyes for Photovoltaic

Applications, *The Journal of Physical Chemistry C*, **2025**, DOI: <u>https://doi.org/10.1021/acs.jpcc.5c00475</u>

169. Murali Adhigan, Venkatesan Natesan, Mohan Sakar, Al Souwaileh Abdullah, S. Roy Aashish, Raja .M, Kothandaraman Ramanujam, Joo Park Seon, Soo Han Sung Insights into the amine-end-terminated fluorophore based zwitterionic poly (methyl methacrylate) quasi-solid electrolyte for flexible supercapacitors, *Journal of Molecular Liquids*, 2025,426, 2025, 127355,DOI: <u>https://doi.org/10.1016/j.molliq.2025.127355</u>

168. Richa Gupta, Nikhil George Mohan, John Bell, Ashok Kumar Nanjundan, Kothandaraman Ramanujam, Fusion of Nitro Isomers of Naphthoquinone Enhances Capacity and Cyclability in Zn-ion Batteries, *Sustainable Energy & Fuels*, **2025**, DOI: <u>https://doi.org/10.1039/d4se01542h</u>

167. Jeeth Sharma, Richa Gupta, Kothandaraman Ramanujam, Vaibhav Kulshrestha, Leveraging Long-Life Alkaline Redox Flow Batteries Using Durable and High-Hydroxide Exchange N-Bridged Triazine Framework mebranes, *Small*, **2025**, 2406395 DOI: <u>https://doi.org/10.1002/smll.202406395</u>

166. Richa Gupta, Chinmaya Mirle, Kothandaraman Ramanujam, Enhancing Solubility of Anthrarufin by Tethering Alkyl Phosphonate and Mitigating Capacity Decay with Additive in Aqueous Organic Redox Flow Batteries, *Sustainable Energy & Fuels*, **2025**, DOI: <u>https://doi.org/10.1039/D4SE00838C</u>

165. Sumanta Kumar Das, Yashwant Pratap, Kharwar Prabakaran Varathan, Kothandaraman Ramanujam, Akhila Kumar Sahu, Engineered Co/Ni–N Bonds in Bimetallic Nanocomposites for Effective Oxygen Reduction catalysts in fuel cells, *ACS Appl.Energy Mater.* **2025**, 8,2,1189–1200, DOI: <u>https://doi.org/10.1021/acsaem.4c02709</u>

164. Sandeep Kumar Mohapatra, Kothandaraman Ramanujam, Sankararaman Sethuraman, Tracking and Tackling the Capacity Fading in Viologen based Aqueous Organic Redox Flow Batteries, *J. Electrochem. Soc.*, **2025**, 172 010523, DOI: <u>https://doi.org/10.1149/1945-7111/ada640</u>

163. Duangailung Kamei, Richa Gupta, Kothandaraman Ramanujam, Nurul Alam Choudhury HQ-doped redox-active gelatin hydrogel membrane electrolytes synthesized by chemical crosslinking of gelatin with glyoxal and glutaraldehyde for solid-state EDLCs, *Ionics*, **2025**, DOI: <u>https://doi.org/10.1007/s11581-025-06123-5</u>

162. Anubhab Sahoo, Tejendra Dixit, Anshu Kumari, Sharad Gupta, Kothandaraman R, PP Rajeev, MS Ramachandra Rao, Sivarama Krishnan, Facile control of giant green-emission in multifunctional ZnO quantum dots produced in a single-step process: femtosecond pulse ablation, *Nanoscale Advances*, **2025**, DOI: <u>https://doi.org/10.1039/D4NA00793J</u>

161. Sumanta Das, Yashwant Kharwar, Prabhakaran Varathan, Kothandaraman Ramanujam, Ahila Kumar Sahu, Engineered Co/Ni-N Bonds in Bimetallic Nanocomposites for Effective Oxygen Reduction Catalysts in Fuel Cells, *ACS Applied Energy Materials*, 8, 2, 1189–1200, **2025**, DOI: <u>https://doi.org/10.1021/acsaem.4c02709</u>

160. Megha Bala, Nandini Jaiswal, Harun Khan, Kothandaraman Ramanujam Boron-doped carbon felt electrode on stabilizing cycle life of soluble lead redox flow battery, *Ionics*, **2024**, 024-05993-5, DOI: <u>https://doi.org/10.1007/s11581-024-05993-5</u>

159. Neha, Aarju Mathew, Ganapathi Rao Kandregula, Kothandaraman Ramanujam, Debdutta Ray, Parasuraman Swaminathan, Water-based activated carbon ink for printed flexible biodegradable supercapacitors, *Advanced Sustainable Systems*, *9*(1), 2400649, **2024**, DOI: <u>https://doi.org/10.1002/adsu.202400649</u>

158. Richa Gupta, Kothandaraman Ramanujam, Turning Adversity into Advantage: Investigating Capacity Decay Mode of Carboxylate functionalized-anthraquinone in Organic Redox Flow Batteries, *ACS Applied Energy Materials*, **2024**, 7, 18, 7737–7744, DOI: <u>https://doi.org/10.1021/acsaem.4c01123</u>

157. Jeet Sharma, Harun Khan, Prashant Upadhyay, Amit Rajak, Sarthak Mishra, Nagalakshmi Gayathri.M, Kothandaraman Ramanujam, Vaibhav Kulshrestha, Robust sulfonated proton-exchange membrane for poly(styrene-co-divinyl benzene)meltinterpenetrated polyethylene network for vanadium redox flow batteries, *ACS Applied Energy Materials*, **2024**, 7, 7384-7396 <u>https://doi.org/10.1021/acsaem.4c01583</u>

156. Swati Panigrahi, Kothandaraman Ramanujam, Zein protein binder coupled with chitosan-derived carbon for polysulfide trapping in Li-S batteries, *J.Chemical Sciences*, 2024, 136:62, DOI: <u>https://doi.org/10.1007/s12039-024-02301-6</u>

155. Harun Khan, Aishwarya kesh, Kothandaraman Ramanujam, A.K.Sahoo, Functionalized graphene nanofiber-based low-cost composite membrane for vanadium redox flow battery applications, *J.Chemical Sciences*,**2024**, 136, 83, DOI: <u>https://doi.org/10.1007/s12039-024-02318-x</u>

154. Harun Khan, Nandini Jaiswal, Nikhil C, M.S.Ramanchandra rao, Kothandaraman Ramanujam, Conformal coating of PbO₂ around boron doped diamond coated carbon felt positive electrode for stable and high-capacity operation of soluble lead redox flow battery, *J.Energy Storage*, **2024**, 99, 113304 https://doi.org/10.1016/j.est.2024.113304

153. Mohana Priya Babu, Sahana B.Moodakare, Raman Vedarajan, Kothandaraman Ramanujam, Quasi-Gel Polymer Electrolyte Interfaced with Electrodes through Solvent-Swollen Poly(ethylene oxide), for High-Performance Lithium/Lithium-Ion Batteries, *ACS Applied Materials & Interfaces*, **2024**, 16, 34, 45399–45410, DOI: https://doi.org/10.1021/acsami.4c06192 **152.** Kanhai Kumar , Pragyan Tripathi , Gokul Raj , Dova Kalyan , Demudu Babu Gorle , Nikhil George Mohan , Surendra Kumar Makineni , Kothandaraman Ramanujam , Abhishek Kumar Singh and Karuna Kar Nanda, Green Synthesis of Magnesium Single Atom Catalyst from Spinacia oleracea-Chlorophyll Extracts for Sustainable Electrocatalytic Nitrate Reduction to Ammonia, *Green chemistry*, **2024**, 26, 7931-7943, DOI: https://doi.org/10.1039/D4GC01422G

151. Richa Gupta, Kothandaraman Ramanujan, A highly conjugated tetrakis-lawsone organic cathode material for enhancing the capacity utilization in the zinc-ion batteries, *J. Chemical Sciences*, **2024**, 136 (19). DOI: <u>https://doi.org/10.1007/s12039-023-02244-4</u>

150. Ganapathi Rao Kandregula, Kothandaraman Ramanujam, Selection of Solid-State Electrolytes for lithium-ion batteries using Clustering Technique, *J. Chemical Sciences*, 2024, 136 (38). DOI: <u>https://doi.org/10.1007/s12039-024-02263-9</u>

149.Debashis Mahato , Aswin Praveen, L.K. Nivedha , Tamilselvi Gurusamy, Kothandara man Ramanujam , Prathap Haridoss , Tiju Thomas, Elucidating the role of interface of Cu-Co hybrid metal oxide for oxygen reduction reaction in Zn-air batteries, *Surfaces and Interfaces*,**2024**, 46, 103924 DOI: <u>https://doi.org/10.1016/j.surfin.2024.103924</u>

148. Priya Vallayil, Vikas S. Padalkar, Chinmoy Nandi, Kothandaraman Ramanujam, Sethuraman_Sankararaman, An Engineered Electrode of Phenazine with Suitable Binder and Carbon to Exhibit_Excellent Energy and Power Density in an Aqueous Organic Zinc Ion Battery, *J. Power Sources*, **2024**,597,234153, DOI: https://doi.org/10.1016/j.jpowsour.2024.234153

147. Anoop M, Nikhil G M, Kothandaraman R, Ramanathan S, Mechanism of Electrochemical Carbon Dioxide Reduction to Formate on Tin Electrode, *Chemical Engineering Journal*, **2024**, 482,148972, DOI: <u>https://doi.org/10.1016/j.cej.2024.148972</u>

146. Dipsikha Ganguly, Kothandaraman Ramanujam, Sundara Ramaprabhu, Improving Pt Utilization and Electrochemical Activity of Proton Exchange Membrane Fuel Cells Through Surface Modification of Carbon Nanotube Catalyst Support, *Energy Technology*, 2024, 12, 2301291, DOI: <u>https://doi.org/10.1002/ente.202301291</u>

145. Jayasree Kumar, Nikhil George Mohan, Tamilselvi Gurusamy, Sai Manoj NVT Gorantla, Prathap Ravichandran, Kartik Chandra Mondal, Kothandaraman Ramanujam, Electrochemical Dinitrogen to Ammonia Reduction at a Nickel (II)Site: An Easy Access to Air-Stable Catalyst, *J. Mater. Chem. A*, **2024**, **12**, 4473-4483, DOI: <u>https://doi.org/10.1039/D3TA05857C</u> "Article featured as a **HOT PAPER**." **144**. Anandhakumar Sukeri, Swati Panigrahi, and Kothandaraman Ramanujam, Sonochemically synthesized hydride-stabilized boron nanosheets via radical-assisted oxidative exfoliation for energy storage application, *Chem Comm*, **2024**, **60**, 176-179. DOI: <u>https://doi.org/10.1039/D3CC04342H</u> (Invited Article)

143. Sandeep Kumar Mohapatra, Kothandaraman R, and Sethuraman Sankararaman, Molecular size exclusion effect extending the cycling stability of a non-aqueous redox flow battery, *APL Energy*, **2023**, 1, 036103. DOI: <u>https://doi.org/10.1063/5.0167853</u>

142. Sundar Sudharsan, Rajendran Rajaram Sachin Kumar, Parasuraman Swaminathan Kothandaraman Ramanujam, Lakshman Neelakantan, Copper oxide anchored polyaniline modified glassy carbon electrode: A new sensor platform for the Amperometric determination of Chlorpyrifos, *Electrochimica Acta*, **2023**, 471, 143305. DOI: https://doi.org/10.1016/j.electacta.2023.143305

141. Sharma Jeet, Gupta Richa, Mishra Sarthak, Ramanujam, Kothandaraman, Kulshrestha Vaibhav, Sulfonated Poly (2, 6-dimethyl-1, 4-phenylene ether) Modified Mixed Matrix Bifunctional Polyelectrolyte Membrane for Long-run Anthrarufin-Based Redox Flow Battery, *ACS Applied Materials & Interfaces*, **2023**, 15, 44899. DOI: <u>https://doi.org/10.1021/acsami.3c08089</u>

140. Sandeep Kumar Mohapatra, Kothandaraman R, and Sethuraman Sankararaman, Benzylviologen/N-hexylphenothiazine based non-aquous organic redox flow battery in inert condition, *J. Energy Storage*, **2023**, 72, 108739. DOI: https://doi.org/10.1016/j.est.2023.108739

139. Rajaram Rajendran, Sachin Kumar, Kothandaraman Ramanujam, and Lakshman Neelakantan, Electrochemical Determination of Paraquat Using Ordered Mesoporous Carbon (CMK-3) Modified Glassy Carbon Electrode, *J. Electrochem. Soc.*, **2023**, 170, 087514. DOI: <u>https://10.1149/1945-7111/acedd0</u>

138. Rajaram Rajendran, Sachin Kumar, S Sudharsan, Pavul Raj Rayappan, Kothandaraman Ramanujam and Lakshman Neelakantan, Amperometric Determination of Hydrazine Using Au Nanoparticle Incorporated CMK-3 Modified Glassy Carbon Electrode, *J. Electrochem. Soc.*, **2023**, 170, 087511, DOI: <u>https://doi.org/10.1149/1945-7111/aced70</u>

137. Premkumar G, Toka Swu, Richa Gupta and Kothandaraman R, C-H functionalization of aromatic amines for azidation catalyzed by Betti base coordinated copper(II) complexes under ultrasonication, *New J. Chem.*, **2023**, 47, 15677-15685. DOI: https://doi.org/10.1039/D3NJ01927F

136. Richa Gupta, Chinmaya Mirale and Kothandaraman Ramanujam, Dimerizing Lawsone into Bis(lawsone) to Counter Solubility and Attain Facile Zn^{2+} Ion Diffusion for Stable

Capacity in Aqueous Zinc-Ion Batteries, *ACS Appl. Energy Mater.* **2023**, 6, 13, 7119–7128. DOI: <u>https://doi.org/10.1021/acsaem.3c00799</u>

135. Abhilipsa Sahoo, and Kothandaraman Ramanujam, Use of voltage for recomposing degraded redox active molecules for flow battery applications, *J. Mater. Chem. A*, **2023**, 11, 13623-13632, DOI: <u>https://doi.org/10.1039/D3TA00624G</u> (Invited Article)

134.Pavul Raj, Mohana Priya Babu, Raja Murugan, Muthuraj Divamahalakshmi, Kothandaraman Ramanujam, Confined sulfur electrode to achieve quasi-solid state sulfur conversion reaction in Li-S battery, *J. Energy Storage*, 67, 107601, **2023**, DOI: https://doi.org/10.1016/j.est.2023.107601

133. Manju P. Maman, Tamilselvi Gurusamy, Arun K. Pal, Rajkumar Jana, Kothandaraman Ramanujam, Ayan Datta and Sukhendu Mandal, Electrocatalytic Reduction of Nitrogen to Ammonia Using Tiara-like Phenylethanethiolated Nickel Cluster, *Angew. Chem. Int. Ed.* e202305462, **2023**, DOI: <u>https://doi.org/10.1002/anie.202305462</u>

132. Tamilselvi Gurusamy, Rajendran Rajaram, Ganapathi Rao Kandregula and Kothandaraman Ramanujam, Electrochemical sensing of NADH using 4 nitrobenzediazonium tetrafluoroborate salt functionalized multiwalled carbon nanotubes, *Dalton Trans.*, 52, 6041 – 6051, **2023**, DOI: <u>https://doi.org/10.1039/D3DT00216K (Invited Article)</u>

131. Sravani Potham, Kothandaraman Ramanujam, A novel hierarchical porous activated carbon-organic composite cathode material for high performance aqueous zinc-ion hybrid supercapacitors, *J. Power Sources*, 557, 232551, **2023**, DOI: https://doi.org/10.1016/j.jpowsour.2022.232551;

130. Ganguly Dipsikha, Ramanujam Kothandaraman, Sundara Ramaprabhu, Lowtemperature synthesized Pt_3Fe alloy nanoparticles on etched carbon nanotubes catalyst support using oxygen-deficient Fe_2O_3 as catalytic centre for PEMFC applications, *ACS Sustainable Chem. Eng.* 11, 3334–3345, **2023**, DOI: <u>https://doi.org/10.1021/acssuschemeng.2c06453</u>

129. Suriyanarayanan Subramanian, Babu Mohana Priya, Murugan Raja, Muthuraj Divamahalakshmi, Ramanujam Kothandaraman, Nicholls Ian, Highly efficient and recycling of cobalt from spent lithium ion batteries using an N-methylurea-acetamide non-ionic deep eutectic solvent, *ACS Omega*, 8, 6959–6967, **2023**, DOI: <u>https://doi.org/10.1021/acsomega.2c07780</u>

128. Priya Vallayil, Sethuraman Sankararaman, Kothandaraman Ramanujam, Structurally and electrochemically tunable pyrylium platforms: A new class of redox anolyte for non-

aqueous organic redox flow battery operating at a high-current density, *J. Energy Storage*, 58, 106325, **2023**, DOI: <u>https://doi.org/10.1016/j.est.2022.106325</u>

127. Subramanian Suriyanarayanan, Sudip Mandal, Kothandaraman Ramanujam, Ian A.Nicholls, Smart bio-nano interface derived from zein protein as receptors for biotinyl moiety, *Talanta*, 256, 124298, **2023**, DOI: <u>https://doi.org/10.1016/j.talanta.2023.124298</u>

126. Subramanian Suriyanarayanan, Ganapathi Rao Kandregula, Kothandaraman Ramanujam, Ian A. Nicholls, Sustainable synthesis of hierarchically grown chloramphenicol-imprinted poly(caffeic acid) nanostructured thin films, *J. Appl. Polym. Sci.*, 140, e53560, **2023**, DOI: <u>https://doi.org/10.1002/app.53560</u>

125. Jeet Sharma, Harun Khan, Prashant Upadhyay, Ramanujam Kothandaraman, Vaibhav Kulshrestha, Stable Poly(2,6-dimethyl-1,4-phenylene ether) Based Cross-Linked Cationic Polyelectrolyte Membrane with Ionic Microstructure Modification for Efficient VRFB Performance, *ACS Appl. Energy Mater.* 6, 447-460, **2023**, DOI: <u>https://doi.org/10.1021/acsaem.2c03421</u>;

124. Tamilselvi G, Nikhil George M, Ganapathi Rao K, Dhinesh Kumar M, Ramanathan S, Kothandaraman R, Mechanistic analysis of the dissociative reduction of nitrogen to ammonia by ZnMn₂O₄ catalyst derived from spent batteries, *Catalysis Today*, **2023**, 423, 113898. DOI: <u>https://doi.org/10.1016/j.cattod.2022.09.004</u>

123. Vivekananda Mahanta, Richa Gupta, Kothandaraman Ramanujam, Hydrobromide Salt of Tribromodopamine as a Positive Electroactive Species with a Three-Electron Redox Process for Redox Flow Battery Applications, *ACS Appl. Energy Mater.* 5, 15166–15174, 2022, DOI: <u>https://doi.org/10.1021/acsaem.2c02833</u>

122. Harun Khan, M. Raja, N.V.Sarma, M. Nagarajan, J. Ramesh, G.A. Pathanjali , Damaraju Parvatalu, Saroj Chaudhary, R. Kothandaraman, Design, Development, and Demonstration of a 1kW/10kWh Vanadium Redox Flow Battery System Minimizing Shunt Current Losses, *J. Electrochem Soc. India*, 71, 45-50, **2022**.

121. D Mahato, Tamil Selvi G, SK Jain, K Ramanujam, P Haridoss, T Thomas, CuO modified ZnO on nitrogen-doped carbon: a durable and efficient electrocatalyst for oxygen reduction reaction, *Mater. Today Chem.*, 26, 101167, **2022**, DOI: https://doi.org/10.1016/j.mtchem.2022.101167;

120. LK Nivedha, Dhinesh Kumar M, Ganapathi Rao K, Raja M, Kothandaraman R, ZnMn₂O₄/Carbon Composite Recycled from Spent Zinc-Carbon Batteries for Zn-Air Battery Applications, *J. Electrochem. Soc.* 169, 100544, **2022**, DOI: <u>10.1149/1945-7111/ac9a7c</u>

119. Venkatesan N, Kesavan T, Raja M, Kothandaraman R, Nishad Fathima N, Efficient electrochemical performance of nitrogen-doped porous activated carbon for high energy symmetric pouch cell supercapacitors, *J. Energy Storage*, 30, 105698, **2022**, DOI: https://doi.org/10.1016/j.est.2022.105698;

118. T. Kesavan, M. Raja and R. Kothandaraman, Rationally designed N/P-dual doped ordered mesoporous carbon for supercapacitors, *J. Mater. Sci.*, 57 (36), 17380-17397, **2022**, DOI: <u>https://doi.org/10.1007/s10853-022-07733-4</u>

117. M. Debashis, G. Tamilselvi, R. Kothandaraman, P. Haridossa and TijuThomasac, Unravelling the role of interface of CuOx-TiO2 hybrid metal oxide in enhancement of oxygen reduction reaction performance, *Int. J. Hydrog. Energy*, *47*, 34048-34065, **2022**, DOI: <u>http://doi.org/10.1016/j.ijhydene.2022.08.016</u>;

116. Ganapathi Rao Kandregula, R. J. Naik and Kothandaraman, R 3D Prussian Blue Decorated Porous Carbon Composite Electrode for Advanced Asymmetric Supercapacitor Applications, *J. Energy Storage*, 54, 105291, **2022**, DOI: <u>https://doi.org/10.1016/j.est.2022.105291</u>

115. Nandini J, Harun Khan, Kothandaraman R, The combined impact of trimethyloctadecylammonium chloride (TMOAC) and sodium fluoride on cycle life and energy efficiency of soluble lead-acid redox flow battery, *J. Energy Storage*, 54, 105243, **2022**, DOI: <u>https://doi.org/10.1016/j.est.2022.105243</u>;

114. Chinmaya Mirle a nd Kothandaraman R, On capacity up-gradation and in-situ capacity rebalancing in anthrarufin based alkaline redox flow battery, *ACS. Appli. Energ. Mater*, 5, 9711–9721, **2022**, DOI: <u>https://doi.org/10.1021/acsaem.2c01392</u>;

113. Anish Satpati, Ganapathi Rao Kandregula, and Kothandaraman R, Machine Learning enabled High-Throughput Screening of Inorganic Solid Electrolytes for Regulating Dendritic Growth in Lithium Metal Anodes, *New. J. Chem.*, 46, 14227-14238, **2022**. DOI: <u>10.1039/D2NJ01827F</u>;

112.Yaswanth P, Tamilselvi G, Sudip Mandal and Kothandaraman R, Copper-Based Non-Precious Metal Catalysts Derived from the In-Situ and_Ex-Situ Loading of Copperbipyridine Metal-Organic Framework on Activated Carbon for Oxygen Reduction Reaction, *J. Chem. Sci.*, 134, 75, **2022**, DOI: <u>https://doi.org/10.1007/s12039-022-02067-9</u>;

111. Sumana. B, Kothandaraman. R and Ramesh Gardas, Nitrogen-Doped High Surface Area Porous Carbon Material Derived from Biomass and Ionic Liquid for High-Performance Supercapacitors, *Ind. Eng. Chem. Res.*,61, , 12073-12082, **2022**. DOI: <u>https://doi.org/10.1021/acs.iecr.2c00195</u>;

110. Nagarani Sandhiran, Sasikala Ganapathy, Yuvaraj Manoharan, Dipsikha Ganguly, Mohan raj Kumar, Kothandaraman Ramanujam and Subramanian Balachandran, CuO–NiO binary transition metal oxide nanoparticle anchored on rGO nanosheets as high-performance electrocatalyst for the oxygen reduction reaction, *Environ. Res.*, 211, **2022**, 112992, DOI: https://doi.org/10.1016/j.envres.2022.112992;

109. Nandini Jaiswal, Harun Khan, and Kothandaraman R, Recent Developments and Challenges in Membrane-Less Soluble Lead Redox Flow Batteries, *J. Electrochem.Soc.*, 169, , 040543, **2022,** DOI: <u>https://doi.org/10.1149/1945-7111/ac662a</u>

108. Dariusz M Niedzwiedzki, Divya Unny, Ganapathi Rao Kandregula and Kothandaraman R, Excited-state properties of newly sensitized imidazole-arylamine-based organic DSSC sensitizers insolvent and adsorbed on TiO2/FTO support, *Dyes & Pigm.*, 202, **2022**, 110273, DOI: <u>https://doi.org/10.1016/j.dyepig.2022.110273</u>

107. Vivekananda Mahanta and Kothandaraman R, Vanadium - Polydopamine Flow Battery, *J. Electrochem. Soc.*, 169, **2022**, 030525, DOI: <u>https://doi.org/10.1149/1945-7111/ac5ad3</u>;

106. Rajendran Rajaram, Tamilselvi Gurusamy, Kothandaraman Ramanujam, Lakshman Neelakantan, Electrochemical determination of paraquat using gold nanoparticle incorporated multiwalled carbon nanotubes, *J. Electrochem. Soc.*, 169, **2022**, 047522, DOI: doi.org/10.1149/1945-7111/ac5bae;

105. Ganapathi Rao Kandregula, M. Dhinesh Kumar, N. Arul Murugan, and R. Kothandaraman, Data-driven Approach Towards Identifying Dye-Sensitizer Molecules for Higher Power Conversion Efficiency in Solar Cells, *New. J. Chem.*, 46, 4395-4405, **2022**, DOI: <u>https://doi.org/10.1039/D1NJ05498H</u>;

104. Jagadeeswari S, Raja Murugan, Harun Khan, Indrapal Singh Aidhen and Kothandaraman Ramanujam, Investigation of alkyl amine substituted quinone derivatives for the redox flow battery applications in acidic medium, *J. Electrochem. Soc.*, 169, 020533, **2022**, DOI: <u>https://doi.org/10.1149/1945-7111/ac505f</u>;

103. B. Sumana and R. Kothandaraman, Combination of redox-active natural indigo dye and bio-derived carbon from ridge gourd fruit for high-performance asymmetric supercapacitors, *Ionics*, 28, 1427-1440, **2022**, DOI: <u>https://doi.org/10.1007/s11581-021-04433-y</u>;

102. V. Priya, R. Kothandaraman and S. Sankararaman, A new 2,3-Dimethoxy-1,4-naphthoquinone redox anolyte for non-aqueous organic static redox battery, *Electrochimica Acta*, 407, 139889, **2022**, DOI: 10.1016/j.electacta.2022.139889;

101. M. Divyamahalakshmi, M. Raja, R. Pavul Raj, Ganapathi Rao Kandregula and R. Kothandaraman, Dual-role Magnesium Aluminate Ceramic Film as an Advanced Separator

and Polysulfide Trapper in Li-S battery: Experimental and DFT investigations, *New. J. Chem.*, 46, 3185-3198, **2022**, <u>DOI: 10.1039/D1NJ05347G</u>;

100. G. Tamilselvi, R. Rajaram, M. Raja and R. Kothandaraman, A web of poly bis(benzimidazolato)copper (II) around multiwalled carbon nanotubes for the electrochemical detection of hydrogen peroxide, *New. J. Chem.*, 46, 1222-1231, **2022**, <u>DOI:</u> <u>10.1039/D1NJ04903H</u>;

99. U. Divya, Ganapathi Rao Kandregula and R. Kothandaraman, Starburst configured imidazole-arylamine organic sensitizers for DSSC applications, *J. Photochem. Photobiol. A Chem.*, 426, 113735, **2022**, DOI: <u>https://doi.org/10.1016/j.jphotochem.2021.113735</u>

98. Harun Khan, M. Raja and R. Kothandaraman, Bilayer Micro-Mesoporous Membrane Assembly Offering Lower Pressure Drop to Realize High Energy Efficient Vanadium Redox Flow Battery, *J. Electrochem. Soc.*, 168, 100542, **2021**, DOI: <u>https://doi.org/10.1149/1945-7111/ac3114</u>;

97. K. Ganapathi Rao, M. Sudip M. R. Chinmaya and R. Kothandaraman, A computational Approach on Engineering Short Spacer for Carbazole based Dyes for Dye-sensitized Solar Cells, *J. Photochem. Photobiol. A Chem.*, 419, 113447, **2021**, DOI: https://doi.org/10.1016/j.jphotochem.2021.113447;

96. P K. Yaswanth, G. Tamilselvi, M. Sudip and R. Kothandaraman, Activation of Oxygen Reduction Reaction on Carbon Supported Ni-Based Complexes, *ChemistrySelect*, 6, 9101-9111, **2021**, DOI: <u>https://doi.org/10.1002/slct.202101231</u>;

95. R. J. Naik, P. Sravani and R. Kothandaraman, Energy-dense aqueous carbon/carbon supercapacitor with a wide voltage window, *J. Electrochem. Soc.*, 168, 70538, **2021**, DOI: <u>https://doi.org/10.1149/1945-7111/ac1319</u>;

94. G. Dipsikha, R. Kothandaraman, S. Ramaprabhu, Platinum Nanoparticles Decorated Expired Drug-derived N-Doped Ketjenblack Carbon as Efficient Catalyst for PEM Fuel Cells, *J. Electrochem. Soc.*, 168, 64517, **2021**, DOI: <u>https://doi.org/10.1149/1945-7111/ac0bef</u>;

93. M. Debashis, P. K. Yashwant, R. Kothandaraman, H. Prathap and TijuThomas, S, N Co-Doped Graphene Quantum Dots Decorated TiO₂ and Supported with Carbon for Oxygen Reduction Reaction, *Int. J. Hydrog. Energy*, 16, 21549-21565, **2021**, DOI: <u>https://doi.org/10.1016/j.ijhydene.2021.04.013</u>;

92. K. Ganapathi Rao, M. Sudip and R. Kothandaraman, Molecular engineering of near-infrared active boron dipyrromethene moiety with various donors and acceptors for tuning

the absorption behavior and electron injection of the resultant dyes, *J. Photochem. Photobiol. A Chem*, 410, 113161, **2021**, DOI: <u>https://doi.org/10.1016/j.jphotochem.2021.113161</u>;

91. M. Raja, Harun Khan, S Sankarasubramanian, D. Sonawat, V. K. Ramani and R. Kothandaraman, Binder-free thin graphite fiber mat sandwich electrode architectures for energy-efficient vanadium redox flow batteries, *Catalysis Today*, 370, 181-188, **2021**, DOI: <u>https://doi.org/10.1016/j.cattod.2021.02.012</u>;</u>

90. Janraj Naik Ramavath, M. Raja, K. Balakumar and R. Kothandaraman, An Energy and Power Dense Aqueous Zinc-Ion Hybrid Supercapacitor with Low Leakage Current and Long Cycle Life, *J. Electrochem. Soc.*, 168, 010538, **2021**, DOI: <u>https://doi.org/10.1149/1945-7111/abdc7a</u>;

89. M. R. Chinmaya, M. Veerababu and R. Kothandaraman, Electrode and conductive additive compatibility yielding excellent rate capability and long cycle life for sustainable organic aqueous Zn-ion batteries, *ACS Applied Energy Materials*, 4, 1218, **2021**, DOI: <u>https://doi.org/10.1021/acsaem.0c02511</u>

88. L. K. Nivedha, M. Raja, R. Kothandaraman, Interplay of the functional units of a binder in the oxygen reduction process of zinc-air battery, *Catalysis Today*, 370, 66-74, **2021**, DOI: <u>https://doi.org/10.1016/j.cattod.2020.09.022</u>;</u>

87. M. R. Chinmaya and M. Veerababu and R. Kothandaraman, Crossover-free hydroxysubstituted quinone anolyte and potassium ferrocyanide catholyte for aqueous alkaline organic redox flow battery, *Catalysis Today*, 370, 173-180, **2021**, DOI: https://doi.org/10.1016/j.cattod.2020.12.012;

86. M. Vivekananda, M. Raja, Harun Khan, and Kothandaraman R, Drastic Improvement in Capacity-Retention and Polarization of Vanadium Redox Flow Battery with Hydrophilic Co₃O₄ Nanostructure Modified Activated Graphite Felt Electrodes, *J. Electrochem. Soc.*, 167, 160504, **2020**, DOI: <u>https://doi.org/10.1149/1945-7111/abc90a</u>;

85. M. R. Chinmaya, M. Raja, Vasudevarao P, Kothandaraman R and Sankararaman S, Functionalised carbazole as a cathode for high voltage non-aqueous organic redox flow batteries, *New J. Chem.*, 44, 14401-14410, **2020**, DOI: <u>https://doi.org/10.1039/D0NJ02543G</u>;

84. Kharwar, Yashwant Pratap, Srinu Akula, Akhila Kumar Sahu, and Kothandaraman R, Highly Durable Pt-Based Catalyst Supported on Carbon Derived from Tamarind Seeds for Oxygen Reduction Reaction in PEM Fuel Cell, *J. Electrochem. Soc.*, 167, 104515, **2020**, DOI: <u>https://doi.org/10.1149/1945-7111/ab9c7c</u>;

83. D. Unny, G.R. Kandregula, J. Sivanadanam, K. Ramanujam, Molecular engineering of pyrene carbazole dyes with a single bond and double bond as the mode of linkage, *New J. Chem.*, 44, 16511-16525, **2020**, DOI: <u>https://doi.org/10.1039/D0NJ03228J</u>;

82. G. Tamilselvi, M. Raja M, D. Akalya, R. Kothandaraman, Confinement Catalysis of Non-covalently Functionalized Carbon Nanotube in Ascorbic Acid Sensing, *Electroanalysis*, 32, 2481- 2492, **2020**, DOI: <u>https://doi.org/10.1002/elan.202060119</u>;

81. A. Rajput, H. Khan, S.K. Raj, R. Kothandaraman and V. Kulshrestha, Styrene- co -DVB grafted PVDF proton exchange membranes for vanadium redox flow battery applications, *Mater. Adv.*, 1, 1930, **2020**, DOI: <u>10.1039/D0MA00496K</u>;

80. S. Mandal, G.R. Kandregula, R. Kothandaraman, replacing aromatic π -system with cycloalkyl in triphenylamine dyes to impact intramolecular charge transfer in dyes pertaining to dye-sensitized solar cells application, *J. Photochem. Photobiol. A Chem.*, 403, 112862, **2020**, DOI: <u>https://doi.org/10.1016/j.jphotochem.2020.112862</u>;</u>

79. P. Mani, A. Sheelam, P.E. Karthik, R. Sankar, R. Kothandaraman, S. Mandal, Nickel-Based Hybrid Material for Electrochemical Oxygen Redox Reactions in an Alkaline Medium, *ACS Appl. Energy Mater.*, 3, 6415, **2020**, DOI: <u>https://doi.org/10.1021/acsaem.0c00615</u>

78. U. Naveen Kumar, Janraj Naik Ramavath, Sourav Ghosh, Tiju Thomas and R. Kothandaraman, Chromium oxynitride as durable electrode materials for symmetric supercapacitors, *Batteries & Supercaps*, 3, 780-788, **2020**, DOI: https://doi.org/10.1002/batt.201900225;

77. J. Vanshika, G. Tamilselvi, P. Gayathri and R. Kothandaraman, Oxygen sensitive 1amino-2-naphthol immobilized functionalized-carbon nanotube electrode, *New J. Chemistry*, 44, 8849-8858, **2020**, DOI: <u>https://doi.org/10.1039/D0NJ00438C</u>

76. Ganapathi Rao Kandregula, S. Jagadeeswari, and R. Kothandaraman, Drastic improvement in dye-sensitized solar cell efficiency by electrosorption based dye staining of Titania semiconductor photoanode, *Electrochimica Acta*, 349, 136344, **2020**, DOI: https://doi.org/10.1016/j.electacta.2020.136344

75. S. Jagadeeswari, Indrapal Singh Aidhen and R. Kothandaraman, New cyclic and acyclic imidazole-based sensitizers for achieving highly efficient photoanodes for dye-sensitized solar cells by potential assisted method, *New J. Chemistry*, 44, 10207-10219, **2020**, DOI: <u>https://doi.org/10.1039/D0NJ00137F</u>;

74. V. Srinivasan, S. Jagadeeswari, R. Kothandaraman, and Mariadoss Asha Jhonsi, Delineating the enhanced efficiency of carbon nanomaterials including the hierarchical

architecture of the photoanode of dye-sensitized solar cells, *Mater. Adv.*, 1, 2964-2970, **2020**, <u>DOI: 10.1039/D0MA00654H</u>

73. D. M. Niedzwiedzki and G. R. Kandregula and S. Jagadeeswari and R. Kothandaraman, Excited State Properties of Metal-Free (D2d and T-SB-C) and Ru-Based (N719 and Z907) Dyes and Photoinduced Charge Transfer Processes in FTO/TiCl₄/TiO₂/Dye Photoanodes Fabricated by Conventional Staining and Potential-Assisted Adsorption, *J. Phys. Chem. A*, 124, 22, 4333-4344, **2020**, DOI: <u>https://doi.org/10.1021/acs.jpca.0c00653</u>

72. Ganapathi Rao Kandregula, Sudip Mandal, Prince Gollapalli, Satyesh Yadav, and R. Kothandaraman, A computational study on boron dipyromethene ancillary acceptor-based dyes for dye-sensitized solar cells, *New J. Chem.*, 44, 4877-4886, **2020**, DOI: <u>https://doi.org/10.1039/C9NJ05334D</u>;

71. J. Prerna, R. Vedarajan, S. Anjaiah, R. Kothandaraman, Bernard Malaman, and Noriyoshi Matsumi, An all solid-state Li-ion battery composed of low molecular weight crystalline electrolyte, *RSC Advances* 10, 8780-8789. **2020**, DOI: <u>https://doi.org/10.1039/C9RA09559D</u>;

70. M. Prabu, D. Sharat, G. Tamilselvi, E. Karthik, B. P. Ratheesh, R. Kothandaraman and S. Mandal, Sodalite-type Cu-based Three-dimensional Metal-Organic Framework for Efficient Oxygen Reduction Reaction, *Chem. An Asian J.*, 14, 4814-4818, **2019**, DOI: <u>https://doi.org/10.1002/asia.201901242</u>;

69. G. Tamilselvi, B. Abhishek, R. Kothandaraman, and N. Chandra Kumar, Electrochemical Sensors Using Liquid Filled Multiwalled Carbon Nanotubes: Enhanced Sensor Characteristics, and NMR Relaxometry Evidence of Liquid Confinement, *J. Electrochem. Soc.*, 166, B1186-B1195, **2019**, DOI: <u>https://doi.org/10.1149/2.0831913jes</u>;

68. P. Vasudeva rao, and R. Kothandaraman, Paper-Based Disposable Zinc-Vanadium Fuel Cell for Micropower Applications, *ChemistrySelect*, 4, 8398 - 8403, **2019**, DOI: <u>https://doi.org/10.1002/slct.201802624</u>;

67. J. N. Ramavath, M. Raja, Sanjeet Kumar, and R. Kothandaraman, Mild acidic mixed electrolyte for high-performance electrical double layer capacitor, *Appl. Surf. Sci.*, 489, 867-874, **2019**, DOI: <u>https://doi.org/10.1016/j.apsusc.2019.05.343</u>;

66. P. K. Yashwant, Sudip Mandal, and R. Kothandaraman, Carbon Supported and Nafion Stabilized Copper (II) Based 1D Coordination Polymer as an Electrocatalyst for Oxygen Reduction Reaction, *J. Electrochem. Soc.*, 166, F3193-F3201, **2019**, DOI: <u>https://doi.org/10.1149/2.0221907jes;</u>

65. Vivekananda Mahanta, M. Raja, and R. Kothandaraman, Activated carbon from sugarcane bagasse as a potential positive electrode catalyst for vanadium redox flow battery, *Materials Letters*, 247, 63-66, **2019, DOI:** <u>https://doi.org/10.1016/j.matlet.2019.03.045</u>;</u>

64. M. Raja, B. Sadhasivam, R. Dhamodharan, R. Kothandaraman, A chitosan/poly (ethylene glycol)-ran-poly (propylene glycol) blend as an eco-benign separator and binder for quasi-solid-state supercapacitor applications, *Sustainable energy & fuels*, 3(3), 760-773, **2019**, DOI: <u>https://doi.org/10.1039/C8SE00530C</u>;

63. G. Dipsikha, S. Ramprabhu, R. Kothandaraman, Chemical Vapor Deposition-Grown Nickel-Encapsulated N-Doped Carbon Nanotubes as a Highly Active Oxygen Reduction Reaction Catalyst without Direct Metal-Nitrogen Coordination, *ACS omega*, 3(10), 13609-13620, **2018**, DOI: <u>https://doi.org/10.1021/acsomega.8b01565</u>;

62. M. Veerababu, R. Kothandaraman, Glycination: A Simple Strategy to Enhance the Cycling Performance of Perylene Dianhydride for Secondary Li-Ion Battery Applications, *ChemistrySelect*, 3(38), 10657-10662, **2018**, DOI: https://doi.org/10.1002/slct.201801588;

61. J. N. Ramavath, M. R. Chinmaya, R. Kothandaraman, Iron-Dicyano Dichloro Quinone Primary Battery, *Chemistry Select*, 3(37), 10281-10286, **2018**, DOI: <u>https://doi.org/10.1002/slct.201801878</u>;

60. P. Vasudeva rao, M. R. Chinmaya, S. Shankararaman, R. Kothandaraman, A High Voltage Organic Redox Flow Battery with Redox Couples O₂/Tetrabutylammonium Complex and Tris (4-bromophenyl) amine as Redox Active Species, *J. Electrochem. Soc.*, 165(11), A2696, **2018**, DOI: <u>https://doi.org/10.1149/2.0661811jes</u>;

59. P. Vasudeva rao, J. N. Ramavath, C. He, V. K. Ramani and R. Kothandaraman, N-and P-co-doped Graphite Felt Electrode for Improving Positive Electrode Chemistry of the Vanadium Redox Flow Battery, *ChemistrySelect*, 3(30), 8678-8687, **2018**, **DOI:** <u>https://doi.org/10.1002/slct.201801446</u>;

58. S. Jagadeswari, M. Sudip, Aidhen, I. S and R. Kothandaraman, Design of Cone-Shaped Hole Transporting Material Organic Structures for Perovskite Solar Cells Applications, *ChemistrySelect*, 3(28), 8159-8166, **2018**, DOI: https://doi.org/10.1002/slct.201801824;

57. G. Tamilselvi, P. Gayathri, M. Sudip and R. Kothandaraman, Redox-Active Copper-Benzotriazole Stacked Multiwalled Carbon Nanotubes for the Oxygen Reduction Reaction, *ChemElectroChem*, 5(14), 1837-1847, **2018**, DOI: https://doi.org/10.1002/celc.201800110 (Invited Article) **56.** R. Kothandaraman, T. Thirupathi, Carbon supported g-C₃N₄ for electrochemical sensing of hydrazine, *Electrochemical Energy Technology*, 4(1), 21-31, **2018**, <u>DOI:</u> <u>https://doi.org/10.1515/eetech-2018-0003</u>;

55. K. Rajavelu, M. Sudip, R. Kothandaraman and P. Rajakumar, Synthesis and DSSC application of triazole bridged dendrimers with benzoheterazole surface groups, *Solar Energy*, 166, 379-389, **2018**, DOI: <u>https://doi.org/10.1016/j.solener.2018.03.071</u>;

54. M. Sudip, R. Vedarajan, Matsumi, N., and R. Kothandaraman, Computational Investigation of the Influence of π -Bridge Conjugation Order of Thiophene and Thiazole Units in Triphenylamine Based Dyes in Dye-Sensitized Solar Cells, *ChemistrySelect*, 3(13), 3582-3590, **2018**, DOI: https://doi.org/10.1002/slct.201702882;

53. P. Mani, A. Sheelam, S. Das, G. Wang, V. K. Ramani, R. Kothandaraman and S. Mandal, Cobalt-based coordination polymer for oxygen reduction reaction, *ACS Omega*, 3(4), 3830-3834, **2018**, DOI: <u>https://doi.org/10.1021/acsomega.8b00088</u>;

52. S. Jagadeswari, R. Mukkamala, M. Sudip, S. R Vedarajan, N. Matsumi, I. S. Aidhen, and R. Kothandaraman, Exploring the role of the spacers and acceptors on the triphenylamine-based dyes for dye-sensitized solar cells, *Int. J. Hydrog. Energy*, 43(9), 4691-4705, **2018**, DOI: <u>https://doi.org/10.1016/j.ijhydene.2017.10.183</u>;</u>

51. A. Sheelam, R. Kothandaraman, Iron (III) chloride-benzotriazole adduct for oxygen reduction reaction in alkaline medium, *Int. J. Hydrog. Energy*, 43(9), 4754-4762, **2018**, DOI: https://doi.org/10.1016/j.ijhydene.2017.10.115;

50. S. Mandal, S. Suriyanarayanan, I. A. Nicholls, and R. Kothandaraman, Selective Sensing of the Biotinyl Moiety Using Molecularly Imprinted Polyaniline Nanowires, *J. Electrochem. Soc.*, 165(14), B669-B678, **2018**, DOI: <u>https://doi.org/10.1149/2.0401814jes</u>;

49. M. Veerababu, N. Kuanr and R. Kothandaraman, Sodium Naphthalene Dicarboxylate Anode Material for Inorganic-Organic Hybrid Rechargeable Sodium-Ion Batteries, *J. Electrochem. Soc.*, 165(2), A175-A180, **2018**, DOI: <u>https://doi.org/10.1149/2.0731802jes</u>;

48. P. Gayathri and R. Kothandaraman, Redox Active Cobalt-Bipyridine Metal Organic Framework-Nafion Coated Carbon Nanotubes for Sensing Ascorbic Acid, *J. Electrochem. Soc.*, 165(13), B603-B609, **2018**, DOI: <u>https://doi.org/10.1149/2.0661813jes;</u>

47. U. Dhivya, S. Jagadeswari, M. Sudip, I. S. Aidhen, and R. Kothandaraman, Effect of Flexible, Rigid Planar and Non-Planar Donors on the Performance of Dye-Sensitized Solar Cells, *J. Electrochem. Soc.*, 165(13), H845-860, **2018**, DOI: <u>https://doi.org/10.1149/2.0551813jes</u>

46. R. Verma, C.J. Park, R. Kothandaraman and V. U. Varadaraju, Ternary lithium molybdenum oxide, $Li_2Mo_4O_{13}$: A new potential anode material for high-performance rechargeable lithium-ion batteries, *Electrochimica Acta*, 258, 1445-1452, **2017**, DOI: https://doi.org/10.1016/j.electacta.2017.12.008;

45. S. Suriyanarayanan, M. Sudip, R. Kothandaraman, and I. A. Nicholls, Electrochemically synthesized molecularly imprinted polythiophene nanostructures as recognition elements for an aspirin-chemosensor, *Sensors and Actuators B: Chemical*, 253, 428-436, **2017**, DOI: <u>https://doi.org/10.1016/j.snb.2017.05.076</u>;

44. M. Sudip, S. Rao and R. Kothandaraman, Understanding the photo-electrochemistry of metal-free di and tri substituted thiophene-based organic dyes in dye-sensitized solar cells using DFT/TD-DFT studies, *Ionics*, 23(12), 3545-3554, **2017**, DOI: https://doi.org/10.1007/s11581-017-2158-y;

43. S. Kushwaha, M.P. Karthikayini, G. Wang, M. Sudip, A. P. Bhobe, V. K. Ramani, R. Kothandaraman, A non-platinum counter electrode, MnNx/C, for dye-sensitized solar cell applications, *Appl. Surf. Sci.*, 418, 179-185, **2017**, DOI: <u>https://doi.org/10.1016/j.apsusc.2016.12.140</u>;

42. M. Veerababu, G. Wang, V. K. Ramani and R. Kothandaraman, Lithium salt of biphenyl tetracarboxylate as an anode material for Li/Na-ion batteries, *Appl. Surf. Sci.*, 418, 9-16, **2017**, DOI: <u>https://doi.org/10.1016/j.apsusc.2016.12.041</u>;

41. R. Verma, R. Kothandaraman and U. V. Varadaraju, In-situ carbon coated CuCo₂S₄ anode material for Li-ion battery applications, *Appli. Surf. Sci.*, 418, 30-39, **2017**, DOI: <u>https://doi.org/10.1016/j.apsusc.2016.11.165</u>;

40. B. Sathiya, S. Anjaiah, R. Kothandaraman, R. Dhamodharan, Green, Seed-Mediated Synthesis of Au Nanowires and Their Efficient Electrocatalytic Activity in Oxygen Reduction Reaction, *ACS Appli. Mater. Interfaces*, 9(34), 28876-28886, **2017**, DOI: <u>https://doi.org/10.1021/acsami.7b07553</u>;

39. P. Vasudeva Rao and R. Kothandaraman, Flexible paper-based borohydride-vanadium fuel cell for powering micro-nanosystems, *Ionics*, 23(7), 1811-1817, **2017**, DOI: <u>https://doi.org/10.1007/s11581-017-1987-z</u>;

38. M. Veerababu and R. Kothandaraman, Introduction of Carbonyl Groups: An Approach to Enhance Electrochemical Performance of Conjugated Dicarboxylate for Li-Ion Batteries, *J. Electrochem. Soc.*, 164 (7), A1720, **2017**, DOI: <u>https://doi.org/10.1149/2.1581707jes</u>;

37. D. N. Joshi, M. Sudip, R. Kothandraman, R. A. Prasath, Efficient light harvesting in dye sensitized solar cells using broadband surface plasmon resonance of silver nanoparticles with

varied shapes and sizes, *Materials Letters*, 193, 288-291, **2017**, DOI: https://doi.org/10.1016/j.matlet.2017.02.008;

36. M. Veerababu and R. Kothandaraman, Rational functionalization of perylene diimide for stable capacity and long-term cycling performance for Li-ion batteries, *Electrochimica Acta*, 232, 244-253, **2017**, DOI: <u>https://doi.org/10.1016/j.electacta.2017.02.152</u>;</u>

35. P. Vasudeva rao and R. Kothandaraman, On In–situ Redox Balancing of Vanadium Redox Flow Battery Using D-Fructose as Negative Electrolyte Additive, *ChemistrySelect*, 2(2), 720-727, **2017**, DOI: <u>https://doi.org/10.1002/slct.201601417</u>;

34. M. Veerababu, N. Kuanr, R. Kothandaraman, Reversible Sodium Storage Behaviour of Aromatic Diimide Disodium Carboxylates, *J. Electrochem. Soc.*, 164(1), A6147-A6153, **2016,**DOI: <u>https://doi.org/10.1149/2.0221701jes;</u>

33. S. Anjaiah, and R. Kothandaraman, Metal-Organic Complexes, [Co (bpy) $_3$] (NO₃)₂ and [Co (bpy) 2NO₃] NO₃· 5H₂O, for Oxygen Reduction Reaction, *J. Electrochem. Soc.*, 164(9), F1022-F1029, **2017**, DOI: <u>https://doi.org/10.1149/2.0141712jes</u>;

32. P. Gayathri, and R. Kothandaraman, Aquotris (benzotriazole) sulfatocopper (II). benzotriazole Framework Assembled on Multiwalled Carbon Nanotubes through π - π Interaction for H₂O₂ Sensing in pH 7 Buffer Solution, *J. Electrochem. Soc.*, 164 (12), 2017, B591-B601, **2017**, DOI: <u>https://doi.org/10.1149/2.0011713jes</u>;

31. M. P. Karthikayini, G. Wang, P. A. Bhobe, S. Anjaiah, V. K. Ramani, K. R. Priolkar, and R. Kothandaraman, Effect of protonated amine molecules on the oxygen reduction reaction on metal-nitrogen-carbon-based catalysts, *Electrocatalysis*, 8(1), 74-85, **2017**, DOI: <u>https://doi.org/10.1007/s12678-016-0341-y</u>;

30. K. Suman, M. Sudip, S. Subramanian, S. Aryasomayajul, and R. Kothandaraman, A DSSC with an Efficiency of~ 10%: Fermi Level Manipulation Impacting the Electron Transport at the Photoelectrode-Electrolyte Interface, *ChemistrySelect*, 1(19), 6179-6187, 2016, DOI: <u>https://doi.org/10.1002/slct.201601461</u>;

29. M. Sudip and R. Kothandaraman, DFT/TD-DFT Studies of Metal-Free N-Annulated Perylene Based Organic Sensitizers for Dye-Sensitized Solar Cells: Is Thiophene Spacer Essential for Improving the DSSC Performance? *ChemistrySelect*, 1(18), 5854-5862, **2016**, DOI: <u>https://doi.org/10.1002/slct.201600868</u>;

28. S. Anjaiah, M. Sudip, T. Thippani, V. Ramkumar and R. Kothandaraman, Carbonsupported Co (III) dimer for oxygen reduction reaction in alkaline medium, *Ionics*, 22(11), 2183-2194, **2016**, DOI: <u>https://doi.org/10.1007/s11581-016-1730-1</u>; **27**. Sheelam, A and R. Kothandaraman, Nitrogen functionalized few layer graphene derived from metal-organic compound: a catalyst for oxygen reduction reaction, *Electrochimica Acta*, 216, 457-466, **2016**, DOI: <u>https://doi.org/10.1016/j.electacta.2016.09.006</u>;</u>

26. Rakesh Verma, R. Kothandaraman, and U. V. Varadaraju, Nanocrystalline Na₂Mo₂O₇: A new high performance anode material, *Electrochimica Acta*, 215, 192-199, **2016**, DOI: <u>https://doi.org/10.1016/j.electacta.2016.08.094</u>;

25. M. Suman, K. Suman, R. Mukkamala, V. K. Siripina, I. S. Aidhen, B. Rajakumar, Band R. Kothandaraman, Metal-free bipolar/octupolar organic dyes for DSSC application: A combined experimental and theoretical approach, *Organic Electronics*, 36, 177-184, **2016**, DOI: <u>https://doi.org/10.1016/j.orgel.2016.06.009</u>;

24. Rakesh Verma, R. Kothandaraman and U. V. Varadaraju, Disodium dimolybdate: a potential high-performance anode material for rechargeable sodium ion battery applications, *J. Solid-State Electrochem.*, 20(5), 1501-1505, **2016**, <u>DOI 10.1007/s10008-016-3153-3</u>;

23. M. Veerababu, U. V. Varadaraju, and R. Kothandaraman, Reversible lithium storage behavior of aromatic diimidedilithium carboxylates, *Electrochimica Acta*, 193, 80-87, **2016**, DOI: <u>https://doi.org/10.1016/j.electacta.2016.02.030</u>;

22. S. Debraj, Purna Chandra Rao, H. B. Aiyappa, ,S. Kurungot, M. Sudip, R. Kothandaraman and Sukhendu Mandal, Multifunctional copper dimer: structure, band gap energy, catalysis, magnetism, oxygen reduction reaction and proton conductivity, *RSC advances*, 6(44), 37515-37521, **2016**, DOI: <u>10.1039/C6RA05961A</u>;

21. K. Rajavelu, P. Rajakumar, M. Sudip, and R. Kothandaraman, Synthesis, photophysical, electrochemical, and DSSC application of novel donor–acceptor triazole bridged dendrimers with a triphenylamine core and benzoheterazole as a surface unit, *New J. Chem.*, 40 (12), 10246-10258, **2016**, DOI: <u>https://doi.org/10.1039/C6NJ02126C</u>;

20. T. Thippani, M. Sudip, G. Wang, V. K. Ramani, and R. Kothandaraman, Probing oxygen reduction and oxygen evolution reactions on bifunctional non-precious metal catalysts for metal-air batteries, *RSC advances*, 6 (75), 71122-71133, **2016**, DOI: <u>10.1039/C6RA13414A</u>;

19. M. P. Karthikayini, T. Thirupathi, G. Wang, V. K. Ramani, and R. Kothandaraman, Highly active and durable non-precious metal catalyst for the oxygen reduction reaction in acidic medium, *J. Electrochem. Soc.*, 163(6), F539-F547, **2016** DOI: <u>https://doi.org/10.1149/2.1001606jes;</u>

18. M. Veerababu, U. V. Varadaraju, and R. Kothandaraman, Improved electrochemical performance of lithium/sodium perylene-3, 4, 9, 10-tetracarboxylate as an anode material for

secondary rechargeable batteries, *Int. J. Hydrog. Energy*, 40(43), 14925-14931, **2015**, DOI: https://doi.org/10.1016/j.ijhydene.2015.09.001;

17. K. M. Palanivelu, V. Prabhakaran, V. K. Ramani, and R. Kothandaraman, Controlling the nitrogen content of metal-nitrogen-carbon based non-precious-metal electrocatalysts via selenium addition, *J. Electrochem. Soc.*, 162(6), F475- F482, **2015**, DOI: <u>https://doi.org/10.1149/2.0101506jes;</u>

16. V. Nallathambi, N. R. Leonard, R. Kothandaraman and S. C. Barton, Nitrogen precursor effects in iron-nitrogen-carbon oxygen reduction catalysts, *Electrochem. Solid-State Lett.*, 14(6), B55, **2011**, DOI: <u>https://doi.org/10.1149/1.3566065</u>;

15. R. Kothandaraman, C. Bock, and Barry MacDougall, CH₃OH Oxidation Activities of an Unsupported PtxRuy Powder Catalyst before and after Different Electrochemical Treatments, *ECS Transactions* 28, 91, **2010**, DOI: <u>https://doi.org/10.1149/1.3505463</u>;

14. R. Kothandaraman, V. Nallathambi, K. Artyushkova, and S. C. Barton, Non-precious oxygen reduction catalysts prepared by high-pressure pyrolysis for low-temperature fuel cells, *Applied Catalysis B: Environmental*, 92, 209-216, **2009**, DOI: https://doi.org/10.1016/j.apcatb.2009.07.005;

13. R. Kothandaraman, W. Deng, M. Sorkin, A. Kaufman, H. Frank Gibbard, and S. C, Barton, Methanol anode modified by semipermeable membrane for mixed-feed direct methanol fuel cells, *J. Electrochem. Society*, 155, B865, **2008**, DOI: https://doi.org/10.1149/1.2943212;

12. R. Kothandaraman and A. K. Shukla, A direct borohydride/hydrogen peroxide fuel cell with reduced alkali crossover, *Fuel Cells*, 7, no. 3, 225-231, **2007**, DOI: <u>https://doi.org/10.1002/fuce.200600023</u>;

11. R. Kothandaraman, S. K. Prashant, and A. K. Shukla, A 28-W portable direct borohydride–hydrogen peroxide fuel-cell stack, *J. Power Sources*, 162, 1073-1076, **2006**, DOI: <u>https://doi.org/10.1016/j.jpowsour.2006.07.059</u>;

10. R. Kothandaraman., A. K. Shukla, A. Gayen, M. S. Hegde, K. R. Priolkar, P. R. Sarode, and S. Emura, Tailoring a Pt–Ru catalyst for enhanced methanol electro-oxidation, *J. Power Sources*, 157, 45-55, **2006**, DOI: <u>https://doi.org/10.1016/j.jpowsour.2005.06.031</u>;

9. A. K. Shukla, R. Kothandaraman and K. Scott, Advances in mixed-reactant fuel cells, *Fuel cells*, *5*, 436-447, **2005**, <u>DOI: https://doi.org/10.1002/fuce.200400075;</u>

8. NA Choudhury, RK Raman, S Sampath, AK Shukla, An alkaline direct borohydride fuel cell with hydrogen peroxide as oxidant, *J. Power Sources*, 143, 1-8, **2005**, DOI: <u>https://doi.org/10.1016/j.jpowsour.2004.08.059</u>;</u>

7. R. Kothandaraman, and A. K. Shukla, Electro-reduction of hydrogen peroxide on iron tetramethoxy phenyl porphyrin and lead sulfate electrodes with application in direct borohydride fuel cells, *J. Applied Electrochem.* 11, 1157-1161, **2005**, DOI 10.1007/s10800-005-9021-y;

6. S. K. Mondal, R. Kothandaraman, A. K. Shukla, and N. Munichandraiah, Electrooxidation of ascorbic acid on polyaniline and its implications to fuel cells, *J. Power Sources*, 145, 16-20, **2005**, DOI: <u>https://doi.org/10.1016/j.jpowsour.2005.01.001</u>;

5. R. Kothandaraman, Nurul A. Choudhury, and Ashok K. Shukla, A high output voltage direct borohydride fuel cell, *Electrochem. Solid-State Lett.*, 7, A488, **2005**, DOI: <u>https://doi.org/10.1149/1.1817855</u>;

4. R. Kothandaraman, G. Murgia, and A. K. Shukla, A solid-polymer electrolyte direct methanol fuel cell with a methanol-tolerant cathode and its mathematical modelling, *J Appl. Electrochemistry*, 10, 1029-1038, **2004**, DOI: https://doi.org/10.1023/B:JACH.0000042674.78355.6c;

3. A. K. Shukla, R. Kothandaraman, N. A. Choudhury, K. R. Priolkar, P. R. Sarode, S. Emura, and R. Kumashiro, Carbon-supported Pt–Fe alloy as a methanol-resistant oxygen-reduction catalyst for direct methanol fuel cells, *J. Electroanal. Chem.*, 563, 181-190, **2004**, DOI: <u>https://doi.org/10.1016/j.jelechem.2003.09.010</u>;

2. A. K. Shukla, and R. Kothandaraman, Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells, *Annu. Rev. Mater. Res.*, 33, 155-168, **2003**, DOI: https://doi.org/10.1146/annurev.matsci.33.072302.09351;

1. A. K. Shukla, C. L. Jackson, K. Scott, and R. Kothandaraman, An improved-performance liquid-feed solid-polymer-electrolyte direct methanol fuel cell operating at near-ambient conditions, *Electrochimica Acta*, 47, 3401-3407, **2002**, DOI: <u>https://doi.org/10.1016/S0013-4686(02)00276-1</u>;

Peer-Reviewed Publications: Reviews

1. Muhammad Shoaib, Priya Vallayil, Nandini Jaiswal, Prathap Iyapazham, Sethuraman Sankaraeaman, Kothandaraman R*, and Venkataraman Thangadurai* for Advances in Redox Flow Batteries- A Comprehensive Review on Inorganic and organic Electrolytes and Engineering Perspectives, *Advanced Energy Materials*, **2024**, 2400721

- 2. Nikhil G Mohanan, Kothandaraman R, Electrocatalysts for Ammonia Synthesis and How Close are We to the Haber-Bosch Synthesis? , Current Opinion in Electrochemistry, *Electrochemical Materials and Engineering*, 45, **2024**, 101520 (invited article)
- 3. A. Murali, M. Sakar, S. Priya, V. Vijayavarman, S. Pandey, Ryansu Sai,Y. Katayama,M. Abdul Kadera and R. Kothandaraman, Insights into the Emerging Alternative Polymer-based Electrolytes for All-Solid-State Lithium-ion Batteries: A Review, *Materials Letters*, 313, **2022**, 131764
- 4. Nandini Jaiswal, Harun Khan and Kothandaraman R, A review on the recent developments and challenges in the membrane-less soluble lead redox flow battery, *J. Electrochem. Soc.*, 169, **2022**, 040543
- A. K. Shukla, and R. Kothandaraman, Methanol-resistant oxygen-reduction catalysts for direct methanol fuel cells, *Annu. Rev. Mater. Res.*, 33, 2003, 155-168. (invited article)

Journal Cover Pages Featuring our Work

1.Sonochemically synthesized hydride-stabilized boron nanosheets via radical-assisted oxidative exfoliation for energy storage applications, Anandhakumar Sukeri, Swati Panigrahi, and Kothandaraman Ramanujam, *Chem. Comm.*, **2024**, DOI: <u>https://doi.org/10.1039/D3CC04342H</u>

2.New cyclic and acyclic imidazole-based sensitizers for achieving highly efficient photoanodes for dye-sensitized solar cells by potential assisted method, S. Jagadeeswari, Indrapal Singh Aidhen, R. Kothandaraman, *New J. Chemistry*, 44, 10207-10219, **2020**. DOI: <u>https://doi.org/10.1039/D0NJ00137F</u>

3.Redox-Active Copper-Benzotriazole Stacked Multiwalled Carbon Nanotubes for the Oxygen Reduction Reaction, Tamilselvi Gurusamy, Prakasam Gayathri, Sudip Mandal, Kothandaraman Ramanujam, *ChemElectroChem*, 5, 1837-1847, **2018**. DOI:https://doi.org/10.1002/celc.201800110

Patents - Granted			
S.No	Title	Synopsis	Patent No. /year
1	A battery cell,	The present study	Indian Patent No.
	Kothandaraman R, Harun	introduces an innovative	563374/2025
	Khan, Nandhini Jaiswal.	near-zero gap cell design	
		to enhance the rate	
		capabilities while	
		operating at reduced flow	

electrolyte mass transport to the electrode for soluble lead redox flow battery applications (SLRFB). This design involves replacing the 10-20 mm conventional thick flow frame with a thin (0.5 mm) porous separator, creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall		
to the electrode for soluble lead redox flow battery applications (SLRFB). This design involves replacing the 10-20 mm conventional thick flow frame with a thin (0.5 mm) porous separator, creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	rates by improving	
lead redox flow battery applications (SLRFB). This design involves replacing the 10-20 mm conventional thick flow frame with a thin (0.5 mm) porous separator, creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	•	
applications (SLRFB). This design involves replacing the 10-20 mm conventional thick flow frame with a thin (0.5 mm) porous separator, creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² . whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	to the electrode for soluble	
This design involvesreplacing the 10-20 mmconventional thick flowframe with a thin (0.5mm) porous separator,creating an almost zero-gap configuration betweenthe electrodes. Theproposed MultiholesDistributed Flow CellDesign (MFCD)significantly improveselectrolyte distributioncompared to conventionalundivided flow cell design(UFCD), enhancing masstransport. The substantialreduction in the inter-electrole gap leads to amarked decrease in ohmicdrop. As a result, voltageefficiency (VE) andenergy efficiency (EE) areimproved by 7% and 9%at 20 mA cm ⁻² ,respectively. Furthermore,the MFCD designwithstands a currentdensity of 100 mA cm ⁻² ,whereas the UFCD designfails at 80 mA cm ⁻² . Thisinnovative configurationcan not only significantlyreduce relative costs andflow rates but alsoenhance the overall	lead redox flow battery	
replacing the 10-20 mm conventional thick flow frame with a thin (0.5 mm) porous separator, creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	applications (SLRFB).	
conventional thick flow frame with a thin (0.5 mm) porous separator, creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	This design involves	
frame with a thin (0.5 mm) porous separator, creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	replacing the 10-20 mm	
mm) porous separator, creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	conventional thick flow	
creating an almost zero- gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	frame with a thin (0.5	
gap configuration between the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	mm) porous separator,	
the electrodes. The proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	creating an almost zero-	
proposed Multiholes Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	gap configuration between	
Distributed Flow Cell Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	the electrodes. The	
Design (MFCD) significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	proposed Multiholes	
significantly improves electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	Distributed Flow Cell	
electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	Design (MFCD)	
electrolyte distribution compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	significantly improves	
compared to conventional undivided flow cell design (UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall		
(UFCD), enhancing mass transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	compared to conventional	
transport. The substantial reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	undivided flow cell design	
reduction in the inter- electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	(UFCD), enhancing mass	
electrode gap leads to a marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	transport. The substantial	
marked decrease in ohmic drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	reduction in the inter-	
drop. As a result, voltage efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	electrode gap leads to a	
efficiency (VE) and energy efficiency (EE) are improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	marked decrease in ohmic	
 energy efficiency (EE) are improved by 7% and 9% at 20 mA cm⁻², respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm⁻², whereas the UFCD design fails at 80 mA cm⁻². This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall 	drop. As a result, voltage	
improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	efficiency (VE) and	
improved by 7% and 9% at 20 mA cm ⁻² , respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	energy efficiency (EE) are	
respectively. Furthermore, the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall		
the MFCD design withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	at 20 mA cm ⁻² ,	
withstands a current density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	respectively. Furthermore,	
density of 100 mA cm ⁻² , whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	the MFCD design	
whereas the UFCD design fails at 80 mA cm ⁻² . This innovative configuration can not only significantly reduce relative costs and flow rates but also enhance the overall	withstands a current	
fails at 80 mA cm ⁻² . Thisinnovative configurationcan not only significantlyreduce relative costs andflow rates but alsoenhance the overall	density of 100 mA cm ⁻² ,	
fails at 80 mA cm ⁻² . Thisinnovative configurationcan not only significantlyreduce relative costs andflow rates but alsoenhance the overall	whereas the UFCD design	
can not only significantly reduce relative costs and flow rates but also enhance the overall		
reduce relative costs and flow rates but also enhance the overall	innovative configuration	
flow rates but also enhance the overall	can not only significantly	
enhance the overall	reduce relative costs and	
	flow rates but also	
	enhance the overall	
performance of SLRFB	performance of SLRFB	
systems.		

2	Metal oxynitride based photo- sensitive supercapacitor and photo supercapattery, Ramanujam, K.; Kandregula, G. R.; Naik, J.,	Low band gap chromium oxynitride was developed and used to convert oxygen into superoxide radicals in the presence of light. This superoxide and oxidized chromium oxy nitride combination develops a firm double layer in the presence of light and the double layer structure is retained even in dark conditions. This upon coupling with the zinc electrode leads to a primary battery. Novelty: chromium oxy nitride replacing expensive precious metal based catalysts and cell able to get charged without use of electricity.	Indian Patent No. 556350/2024
3	Process for preparing functionalized and hydride inserted boron/borophene nanosheets, Kothandaraman Ramanujam, Anandhakumar Sukeri, Swati Panigrahi	By probe sonication, boron nanosheets were produced oxidizing boron powder with the hydrogen radicals produced by the homolytic cleavage of water. These boron nanosheets can be used for controlled reduction reaction in organic synthesis and as anode material for Li-ion battery	Indian Patent No. 554250/2024
4	High-capacity redox flow battery, Kothandaraman Ramanujam, Abhilipsa Sahoo	During charging 2,6- dihyroxanthraquinone undergoes reduction forming radical anion, which undergoes dimerization forming a peroxo species which is	Indian Patent No. 553775/2024

		charging, carbon electrode corrosion, and limitations in cycle life and areal	
		electrodes, high overpotentials causing oxygen evolution during	
		incomplete dissolution of PbO2 deposits at positive	
		lead dendrite formation at negative electrodes,	
		by soluble lead-acid redox flow batteries (SLRFBs). These challenges include	
		invention addresses critical challenges faced	
	Khan, Nikhil C.	a carbon substrate. This	
	Kothandaraman R, M.S.Ramachandra Rao, Nandhini Jaiswal, Harun	comprises a boron-doped diamond (BDD) coated on	
	lead acid redox flow battery comprising the same, Kothendersman P	soluble lead acid redox flow battery (SLRFB), wherein the electrode	
5	Electrode for soluble lead acid redox flow battery and soluble	The present invention relates to an electrode for	Indian Patent No. 550716/ 2024
		theoretical capacity of the battery	
		dianion, allowing us to reach close to the	
		to reduce dimer into	
		electro inactive upto 2.0 V, therefore high voltage cut-off of 2.4 V exercised	

		storage medium in flow battery	
8	A new multilayer sandwich design of a redox flow battery cell, Kothandaraman R and Varadaraju U V	To reduce iR drop (ohmic drop) a multilayer sandwich carbon material was developed for vanadium redox flow battery and reduced overpotential as much as 100 mV	Indian Patent No. 428259 / 2023
9	Solvent-filled multiwalled carbon nanotubes for enhanced electrochemical sensing applications, Kothandaraman R and Tamilselvi G.	Polar solvents were filled into the multi walled carbon nanotubes, which demonstrated an order of magnitude increased sensitivity towards simultaneous detection of biomolecules such as dopamine, uric acid, ascorbic acid etc.	Indian Patent No. 400805 / 2022
10	Method for improving vanadium redox flow battery performance by suppressing H ₂ evolution and balancing redox kinetics using organic molecules, Kothandaraman R and Vasudevarao P	During charging, in the negative electrode of vanadium redox flow battery hydrogen evolves causing state of charge imbalance between the anolyte and catholyte. To prevent it, hydrogen evolution was mitigated using D-fructose	Indian Patent No. 404775 / 2022
11	Effect of semi - labile multidentate ligands on oxygen reduction reaction performance of non-precious metal catalysts, Kothandaraman R and Karthikayini M P	EDTA was used along with the Mn-based non- precious metal catalysts for oxygen reduction reaction. In the presence of EDTA oxygen reduction reaction activity enhanced.	Indian Patent No. 324235 / 2019
12	Novel catalyst for oxygen reduction reaction in fuel cells, SAC Barton, R. Kothandaraman, V. Nallathambi	A iron-based non-precious metal catalysts was generated and demonstrated for oxygen	US Patent No. US20110287174A1 / 2011

	reduction reaction in fuel	
	cells	

Patent	s - Submitted		
S.No.	Title	Synopsis	Application No. /year
1.	THF-Water Solvent Mixture	A THF-water cosolvent is	Appl. No.
	with New Electrolyte	employed to enhance the	202541022785/2025
	Composition for Enhancing	solubility of I2 in Zinc-	
	Iodine Solubility in Zinc-	polyiodide redox flow	
	Polyiodide Redox Flow	batteries, leading to	
	Batteries, Kothandaraman R,	improved electrolyte	
	Indrapal Singh Aidhen, Rubi	utilization and,	
		consequently, a reduction in	
		the overall cost of ZIFB.	
2.	Enhancing Solubility of	NaBr as an economical	Indian Patent filing,
	Bromine in Energy-Dense	additive is incorporated to	Year: 2025, IDF No
	Zinc-Bromine Flow Batteries	improve bromine solubility	3286
	Through Low-Cost	in the aqueous electrolyte of	
	Electrolyte Additive,	zinc-bromine flow batteries.	
	Kothandaraman R, Nivedha.	Bromine is retained as	
	L.K	polybromide in the solution	
		phase thereby reducing the	
		vapour pressure of bromine	
		and attaining a high	
		volumetric capacity.	
3.	Low-cost Octa-Vinyl	The membrane reported	Indian Patent filing,
	POSS/SPEEK Blend	herein is made up of low-	Year: 2025, IDF No
	membrane for vanadium	cost materials which can	3305
	redox flow battery,	reduce the overall cost of	
	Kothandaraman R, Priyanka	redox flow batteries. SPEEK	
	Bavdane, Dr. Gaurav Pande,	polymer is blended with OV-	
	Vansh Bhutani, Aneena	POSS and improves its	
	Simon	selectivity toward vanadium	
		ions thereby, achieved	
		comparable performance	
		with Nafion® 117.	
		Therefore, this invention	
		provides a new strategy for	
		cost reduction of flow	
		batteries.	

4.	Donnan Potential Countering	In the zinc-polyiodide redox	Appl. No.
т.	the water movement making	flow battery, the thicker	202441051658/2024
	membrane perm selective to	Nafion membrane is	
	K ⁺ ions in Zinc-polyiodide	replaced with a bilayer	
	redox flow batteries,	membrane composed of a	
	Kothandaraman R, Harun	porous and a thinner 25 µm	
	Khan, Rubi	Nafion membrane.	
		However, the low-cost	
		electrolyte additive KCl is	
		incorporated to mitigate	
		electrolyte crossover.	
5.	Probe Sonication Converting	Nitrates were converted into	Appl. No.
	Nitrates to Ammonia in	ammonia using hydrogen	202341087398 /2023
	water, Kothandaraman	radicals obtained through	
	Ramanujam, Nikil George	the homolytic cleavage of	
	Mohan	water by ultrasonication.	
6.	Boosting the coulombic and	Boron-doped diamond	Appl. No.
	energy efficiencies along with	(BDD)coating was done on	202341057222 / 2023
	rate capability of SLRFB by	the carbon felt electrode	
	using a BDD coated carbon	making it corrosion resistant	
	felt electrode,	at high voltage operation in	
	Kothandaraman Ramanujam,	aqueous electrolytes. The	
	Ramachandrarao M.S, Harun	use of BDD coated	
	Khan, Nikhil C, Nandini	demonstrated utilizing it as	
	Jaiswal	positive electrode in the	
		soluble lead redox flow	
		battery enhancing the	
		voltage, capacity and energy	
		efficiency of the battery	
7.	Catholyte material for	A three electron reduction	Indian Patent Filing
	aqueous acidic flow battery,	process was established	Year: 2022, IDF NO.
	Vivekananda Mahanta, Richa	using dopamine	2384.
	Gupta, and Kothandaraman	hydrobromide salt, which is	
	R,	utilized as catholyte in the	
		zinc-organic catholyte flow	
		battery	
8.	Molecular and electrode	A novel, ordered	Indian Patent Filing
	engineering of pentacene-	mesoporous carbon (CMK-	Year: 2019, IDF NO.
	5,7,12,14-tetraone for	3) was used to host the	1945)
	sustainable organic aqueous	pentacene-tetraone	
	zn-ion batteries,	enhancing the C-rate	
	Kothandaraman R, Veerababu	(charging rate) of the	
	M, Chinamay R	battery.	

-		

Resear	ch Grants - Sponsored				
S. No.	Title	Sponsoring Agency / Aims of Grant	Period	PI/Co -PI	Amount ~ (Rupees in lakhs)
1	Development of boron- doped diamond coated corrosion-resistant carbon fabric for energy, and textile/organic effluent water cleaning applications	National Technical Textiles Mission, Ministry of Textiles / For Developing BDD coated carbon felt, carbon paper to demonstrate corrosion resistance of cathode in fuel cells and flow batteries	2023-2026	PI	702
2	1kW/5kWh Redox Flow Battery with Anthraquinone Based Anolyte and Iron Catholyte: A Commercial Worthy India-Centric Solution for Grid-Scale Energy Storage	DST-TDP / For the synthesis of kg scale 2,6-dihydroxy anthraquinone for demonstrating cost- reduction methodologies and utilizing it for kW scale flow battery building with industry support	2023-2025	PI	230
3	Renewable Ammonia Fuel for Circular Energy Economy- A Carbon Free Approach	Energy Consortium- IIT Madras / Demonstrating ammonia reactor using the 2D materials developed in this project	Jul 2023- Jan 2025	PI	46
4	Boron-doped diamond based electrolysis:	Mobility Grant To U. Sydney by IIT	Mar 2023- Mar 2025	PI	7

	Giving a second life to industrial waste water	Madras / To collaborate with Prof Antonio Tricoli from U. Sydney on BDD coated electrodes for water treatment			
5	Soluble Lead Redox Flow Battery	ARCI-Hyderabad / To demonstrate kW scale soluble lead redox flow battery with the additives and modified carbon felt electrodes developed in our lab	April 2023-Oct 2024	PI	15
6	Activation of zinc and exploring the catalytic amount of zinc for cycloaddition reaction	Pfizer Healthcare India Private Limited / Demonstrated recovery of zinc from the spent solution by electrochemical plating process	Jan 2023- July 2023	Co-PI (50% share)	38.16
7	Development of 1 kW/10 kWh Zinc-Bromine Redox Flow Battery	Archean Chemical Industries Limited / For demonstrating 5kW gel redox battery using novel corrosion free zinc substrate	2023-2024	PI	109
8	Energy Storage and Conversion Vertical of The Energy Consortium IIT Madras	MHRD-IITM / For developing quasi solid state electrolyte for Li-S and Li-ion batteries	2023-2025	Co-PI	1500 (300 is for advanced energy storage and conversion vertical)
9	Spent Battery Recycling into Electrocatalyst for Ammonia Production and Raw Materials for New Batteries	Department of Science and Technology / Demonstration of Zinc-air battery and ammonia production	29 Sep 2021 to 28 Sep 2024	PI	77.93

		using ZnMn ₂ O ₄ extracted from the spent battery.			
10	Advanced Centre for Energy Storage and Conversion (PCoE)	Ministry of Human Resource and Development / For Li-S battery development	04 Feb 2021 to Feb 2025	PI	225 250 (March 2023-March 2025)
11	Meso-microporous core- shell carbon-based materials and electroactive diluent for long cycle life and high energy density Li- S batteries	Indian Space Research Organization / For developing mesoporous ordered carbon material host for Sulfur loading. This is utilized as cathode in Li-S battery	29 Oct 2020 to 28 Oct 2022	PI	24.99
12	Tailoring of quinones as high energy density cathode materials for sustainable secondary aqueous Zn-ion batteries	Indian Institute of Technology Madras / Developed organic cathode materials for rechargeable Zn-ion battery	4 Jan 2020 to 23 Jan 2021		6.10
13	On the Reduction of iR- Iosses, Flow Optimization and Identifying Alternative Membranes to Nafion for 1kW -4kWh Vanadium Redox Flow Battery Suitable for Residential Use	Ministry of Human Resource and Development / Developed novel thin carbon electrodes for reducing iR loss at kW scale redox flow battery	2 Years (30 Dec 2019 to 29 Dec 2022)		99.89
14	Energy Storage Platform on Supercapacitors	Department of Science & Technology / Developed cathode materials for Li/Na battery and organic redox active	5 Years (06 Nov 2019 to 05 Nov 2024)		95.62

		materials for flow battery			
15	Light induced process of hierarchical electron cascade system, materials and devices for solar energy conversion	Science and Engineering Research Board	14 Nov 2018 to 13 Mar 2022	Admi nstrat or for the NPDF grant	10.00
16	Development of High Performance and Low- Cost Boron-Doped Diamond Electrodes for Waste Water Treatment	Impacting Research Innovation and Technology – IMPRINT / Served as consultant for analysing the waste water treated by novel boron-doped diamond electrode based cell	09 Dec 2019 to 08 Dec 2022	Co-PI (20% share)	142.78
17	Ionogel Electrolyte Membrane Fuel Cell with Plasma Electrolytic Nitrided Metallic Bipolar Plate and Effective Flow Field Design	Department of Science & Technology / Developed catalyst for the oxygen reduction reaction	02 Sep 2019 to 01 Sep 2022	Co-PI (33% Share)	56.73
18	Investigation of Stable Organic and Organometallic Radical Ions and Ions as Electro- active Species in Organic Redox Flow Batteries (RFBs) in Non-aqueous Media	Science and Engineering Research Board / Developed phenazine, pyrylium platforms, benzyl viologen based redox molecules for flow battery	24 Sep 2018 to 24 Feb 2022	Co-PI (50% share)	75.59
19	DST Solar Energy Harnessing Centre - Energy Storage Domain - Sub Project	Department of Science & Technology / Modifications of the electrode and electrolyte for vanadium redox flwo battery to	28 Jun 2018 to 30 Jun 2022	Co-PI (50% share)	293.70

		improve energy efficiency and capacity			
20	DST Solar Energy Harnessing Centre - PV Domain (RWP-PartA) - Sub Project Role: PI	Department of Science & Technology / Developed cyclic and acyclic imidazole, carbazole, triphenylamine based dyes for dye sensitized solar cells	3 years (28 Jun 2018 to 30 Jun 2022)	Co-PI (share ~ 1.5 Cr)	559.14
21	Development of 10 kW / 50 kWh Redox Flow Battery System for Solar PV Applications	Impacting Research Innovation and Technology – IMPRINT	16 Feb 2017 to 31 Mar 2022	Co- P!(20 % share)	399.84
22	DevelopmentandDemonstration of 250W,1kWh Vanadium RedoxFlow Battery SystemsRechargeablebyRenewableEnergy suchas Solar and Wind Energy	Department of Science & Technology / Demonstrated 250 W flow battery stack and operated using solar power	3 Years (17 May 2017 to 16 Aug 2020)	PI	81.37
23	Direct light to chemical energy conversion: A hybrid of solar cell and battery	Indian Institute of Technology Madras	1 Year (01 May 2016 to 30 Jun 2017)	PI	7.00
24	Rechargeable zinc-air battery with novel 3D zinc electrode structure and durable bipolar cathode	Council of Scientific and Industrial Research	01 Jan 2015 to 31 Dec 2016	PI	3.00
25	Polynuclear transition metal complexes for electrochemical reduction of oxygen	Department of Science & Technology / Developed Mn, Fe and Co based non- precious metal catalyst for fuel cell	14 Aug 2014 to 13 Aug 2017	PI	25.00

26	Non-precious metal catalyst for oxygen reduction reaction in Polymer Electrolyte Membrane Fuel Cells (PEMFC) with improved durability and activity	Indian Space Research Organization / Developed non- precious metal catalysts for oxygen reduction reaction	26 Sep 2011 to 25 Sep 2014	PI	31.40
27	Non-precious metal catalysts with increased active catalytic-site density for the electrochemical oxygen reduction reaction	Nissan Research Support Program	06 Jul 2011 to 05 Jul 2013	PI	8.80
28	Exploding type metal precursors for the synthesis of a non- precious metal catalyst with improved oxygen reduction activity	Indian Institute of Technology Madras	05 Jul 2011 to 04 Aug 2013)	PI	20.70

Resear	Research Grants – Consultancy (Kothandaraman is the PI in all the projects listed below)				
S.No.	TitleSponsoring AgencyPeriod		Period	Amount ~ (Rupees in lakhs)	
1	1kW/5kWhRedoxFlowBatterywithAnthraquinoneBasedAnolyteandIronCatholyte:ACommercialWorthyIndia-CentricSolutionforGrid-ScaleEnergyStorage	LeeP eDrive Pvt. Ltd.	2024-2026	5 (Industry partner of DST project S.No. 2 in the Research Grants – Sponsored Table above)	
2	Strategies towards the development of 10 kW/ 50 kWh Vanadium redox flow batteries for commercial applications	OECT (ONGC)	Jan 2024 – June 2025	829	
3	Electrolyte Evaluation	D. J. Irvin Company LLC	4 months (Mar – Jun 2023)	4	
4	Patent Licensing (Indian Patent Filing Year: 2022, IDF NO. 2384)	Archean Chemical Industries Limited	2023	50 + 2% Royalty	

5	Development of an efficient organic magnesiumborate- based (OMBB) electrolyte compatible with ordered mesoporous carbon (OMC) based sulfur cathode material for Mg-S battery technology	Tumpudi Innovations Private Limited	July 2023 – July 2024	32.34
6	Exploration on use of Efficient Phenazine Based Molecules as Redox-Active Materialin Redox Flow Battery (RFB) system, in both domain of Aqueous Organic RFB (AORFB) & NonAqueous RFB (NORFB) for Industrial Application.	NOCIL Limited	3 months (01 Oct 2022-31 Dec 2022)	5.46
7	Design, Development and Demonstration of 10 kWh/1kW Rechargeable Energy Storage System in Combination with Solar PV Charging: Vanadium Redox Flow Batteries (RBIC project)	ONGC Energy Centre Limited	2 Years (16 Aug 2019 to 15 June 2022)	388 (Completed)
8	Removal of Cl- from the sodium formate + sodium chloride solution (RBIC project)	Amber Chemicals and Pharmaceutica Is Private Limited	6 months (01 Jun 2021 to 30 Nov 2021)	5.31
9	Development of High Performance and Low-Cost Boron-Doped Diamond Electrodes for Waste Water Treatment	Kapindra Precision Engineering Private Limited	2 Years (18 th May 2020 to 08 th Dec 2022)	3.0
10	Converting spent zinc-carbon and zinc based alkaline batteries into a source of nutrients in the manure	Tide Water Oil Company (India) Limited	3 Years (23 Mar 2020 to 22 Mar 2023)	20.82

11	Carbon materials development for battery	Labkarts	3 months (22 Mar 2021 to 21 Jun 2021)	2.00
12	Fuel cell reactor for H ₂ O ₂ production	Research Supporters India	1 Year (01 Jul 2019 to 31 Dec 2019)	1.50
13	Development of oxygen sensor and gas purification system	Elixir Electronics	1 Year (04 Feb 2019 to 29 Feb 2020)	1.18
14	Specific Power Consumption of KClO ₃ plant	Vaighai chemical industries limited	1 Year (01 May 2018 to 13 Oct 2018)	0.59
15	Colouring Project	Titan Company Ltd.	1 Year (01 Feb 2017 to 31 Dec 2017)	9.38
16	Novel method of directly converting rice husks (RH) to carbon-encapsulated, Nano- structured silicon (cnSi) for Li- ion Battery (LiB) Anodes	Maccaferri Environmental Solutions Private Limited	1 Year (01 Mar 2014 to 30 Sep 2015)	3.60

Invited	I talks and lectures			
1.	Title: Polymer Electrolytes for Aqueous Redox Flow Battery			
	Polymer Society Conference at Jeju Convention Centre, Korea, April 17, 2025			
2.	Title: High-Capacity Aqueous Redox Flow Batteries, DGIST-Deagu, April			
	15,2025			
3.	Title: High- Capacity Redox Flow Batteries			
	Yonsei University, Seoul, April 14, 2025			
4.	Title: High- Capacity Safer Aqueous Flow Batteries			
	5 th International Conference on Emerging Smart Materials in Applied Chemistry			
	(ESMAC-2024) & 2 nd KIIT-CRSI Seminar on Modern Trends in Chemical			
	Sciences in Collaboration with The National Academy of Sciences, India (NASI)			
	Local Chapter, India between December 20-22, 2024			
5.	Title: High- Capacity Aqueous Redox Flow Batteries			
	Energy Summit 2024, held at Deakin University, Melbourne, Australia between			
	26-29 November 2024.			

6.	Title: Boron doped diamond coated graphite felt electrodes as corrosion free
	positive electrodes for energy storage systems.
	30 th International Conference & Expo on Corrosion held at Chennai Trade Centre,
	India between November 20-23,2024
7.	Keynote Lecture Title: Lithium Storage Capacity of van der Waals Gap in the
	Alternatives to Graphite, 4th International Conference on Advanced Materials
	Synthesis, Characterisation and Applications held at Queensland University of
	Technology (QUIT), Brisbane, Australia, between September 25-27,2024.
8.	Title: Post Lithium Storage Envisioned with Aqueous Flow Batteries.
	International Conference on Frontiers in Electrochemistry: Innovations in
	Supercapacitors and Batteries held at Crescent Institute of Science and
	Technology, Chennai, between September 20-21,2024.
9.	Title: Post Lithium Storage Envisioned with Aqueous Flow Batteries.
	3 rd International Conference on Electrochemical Science and Technology-2024
	held at CSIR-NPL, New Delhi, between September 18-20,2024.
10.	Title: Lithium Storage Capability of Van der Waals Gap in the
	Alternatives to Graphite.
	The 13th Bengaluru INDIA NANO 2024, organized by Department of Science &
	Technology, Government of Karnataka, Karnataka Science & Technology
	Promotion Society (KSTePS), and Jawaharlal Nehru Centre for Advanced
	Scientific Research (JNCASR) held at The Lalit, Bengaluru between August 1-
	3,2024
11.	Title: Faradaic and Non-Faradaic Contribution to the Capacity of Novel Organic
	Cathode of Li-ion Battery.
	International Conference on Energy and Environmental Materials (E2M-2024),
	organized by Department of Metallurgical Engineering and Materials Science,
	Indian Institute of Technology Indore between July 11 – 13, 2024
12.	Title: Lead an expert session on Microbial Electrochemical Technologies-
	Fundamentals and characterization tools.
	DST –SERB (Karyashala) workshop jointly organized by KSCSTE-CWRDM,
	Thiruvananthapuram, Kerala between July 5-11, 2024
13.	Title: Novel high voltage cathode, anode materials, and polymer electrolyte for Li-
	ion battery applications.
	SERB workshop on Advanced Energy Storage Materials and Device Fabrication
	organized at University of Calicut, Malapuram between May 27-31, 2024
14.	Title: Lithium metal/Lithium-ion Polymer Electrolyte Batteries.
	Asian Conference on Electrochemical Power Sources 12 (ACEPS-12), Osaka-
	Japan between May 19-22, 2024
15.	Plenary Lecture Title: Hydrogen Storage via Ammonia by Electrochemical
	Reduction of Nitrogen
	SERB Workshop on Green Hydrogen Production, Storage and Transportation: A
	Green Energy Prospective, School of Mechanical Engineering, VIT, Vellore

	between March 14-15 2024
16.	Title: One Redox Centre with Three Hats
	Post Lithium Storage Cluster of Excellence (POLIS), Online Seminar organized
	by Dr Johannes Schnaidt, Universitat Ulm, Germany, 28th February 2024
17.	Title: One Redox Centre with Three Hats
	18th Asian Conference on Solid State Ionics (ACSSI)-2024 organized at
	Meenakshi College for Women on 22 nd February 2024
18.	Title: One Redox Centre with Three Hats
	International Conference on Advanced Functional Materials and Devices –
	2024 , organised by SRM University, Chennai between 26-28 th February 2024
19.	Title: Organic Redox Flow Battery Chemistries and Capacity Drop Mitigation
	Strategies
	Current Trends in Chemical Sciences organised by CRSI Madhurai Chapter at
	School of Chemistry, Madurai Kamaraj University between Feb 21 to 23, 2024.
20.	Title: Upending Current Ammonia Synthesis Method
	International Conference on Electrochemistry for Industry, Health and
	Environment (EIHE-2024), VIT Vellore, 8 th February 2024
21.	Title: High Energy and Power Density Redox Flow Battery Chemistries for Grid
	Storage
	Indo-German Centre for Sustainability (IGCS) Summar School 2023, The
	Integration of Renewable Energies into a Power Grid – A Key Contribution
	towards a Carbon Neutral Society, organized by TU Berlin, Germany and IIT
	Madras, India July 24 - August 4, 2023.
22.	Memorial Lecture Title: Electrochemistry on Storing Energy and Building
	Molecules
	Dr K S Rajagopalan Birth Centenary Memorial Lecture, Ramakrishna Mission
	Vivekananda College, Mylapore, Chennai, on 11 th October 2023
23.	Title: Electro valorisation
	DAE-BRNS 6 th National Workshop on Materials Chemistry (NWMC), BARC,
	Mumbai, 13-14, October, 2023 (Bronze Medal Lecture)
24.	Title: In-situ Regeneration of Energy Delivery in an Organic Redox Flow Battery
	30 th CRSI National Symposium in Chemistry (CRSI-NSC-30) organized by
	Jawaharlal Nehru University, New Delhi from February 3-5, 2023. (Bronze Medal
	Lecture)
25.	Title: Commercial Worthy Redox Flow Battery Chemistries
	Indo-French Workshop on Clean and Sustainable Energy Technologies
	(INFINITE), National Physical Laboratory-Delhi, 21-24, February, 2023
26.	Title: Long Duration Energy Storage Systems for India (Including Pumped Hydro)
	Stationary Energy Storage India, Organized by IESA at Hotel Metropolitan-New
	Delhi, 17 th February 2023
27.	International Conference on "Future of Energy with Science and Technology"
27.	(FEST 2022) organized by Department of Chemistry, University of Delhi, New
	Delhi from December 29-30, 2022.
	20111 Hom December 27 30, 2022.

28	Title: 1-2-1 Pathway: Electrically Refurbishing Organic Redox Couples for
20.	Energy Storage in Flow Battery
	IC-ECS-2023, Amrita Vishwa Vidyapeetham, Coimbatore, 23 rd June 2023
29.	Title: Two's Company or Crowd? The importance of being single for energy
_>.	delivery
	Recent Advancements in Sustainable Electrochemical Processes (RASEP2023),
	TKM College of Engineering, Kollam, TEQIP II Sponsored Faculty Development
	Program, 9-10 th January 2023
30.	Title: DRT Analysis of Lithium Sulfur Batteries
0.01	Wiley InfoMat Workshop in India: Current Status and Future Potential of Energy
	Technologies, on June 24th, 2022
31.	International Conference on "Recent Trends in Materials and Magnetism (RTMM-
	22)" organized by the Department of Chemistry, Loyola College (Autonomous),
	Chennai - 600034 from December 15-16, 2022.
32.	National Convention of Electrochemist (NCE) held at PSG Tech, Coimbatore
	between 26 th to 27 th July 2022
33.	Symposium entitled "Chemistry and Materials for New Batteries Technology"
	organized by Canadian Chemistry Conference and Exhibition (CCCE 2022) to be
	held from June 13 th – 17 ^{th,} 2022, in Calgary
34.	"Low-dimensional materials-2022" organized by IISER-Pune from 19th -20th May
	2022
35.	Amara Raja Award Lecture at the National Symposium on Electrochemical Science
	and Technology (NSEST-2021) organised by Electrochemical Society of India at
	Inorganic Physical Chemistry-IISc-Bangalore.
36.	Title: Sustainable Materials for Energy Storage
	Seminar Venue: National Centre for Nanoscience and Nanotechnology, University
	of Madras, Chennai, 16 th March 2020 (this seminar is organized by the Director of
	National Centre for Nanoscience and Nanotechnology, the University of Madras
	for the postgraduate students)
37.	Title: Catalysis on the surface of nanotubes having confined solvent media
	Conference details: Asian Consortium for Computational Materials Science:
	International Conference on Materials Genome (ICMG-2020), SRM University,
	Amaravathi, 5-7 th February 2020
38.	Title: Solvent Filled Multiwalled Carbon Nanotubes for Sensor and Battery
	Applications Conference details: Electrochemistry in Industry Health and
	Environment, BARC, Mumbai, 21-25 th January 2020 (organized by Indian Society
	for Electroanalytical Chemistry)
39.	Title: Ultra high energy efficient redox flow battery,
	Conference details: Frontiers in Materials Processing Applications, Research and
	Technology (FiMPART, Endorsed by Materials Research Society Singapore),
	Convention Centre, Ahmedabad, 15-17 th December 2019.

10	
40.	Title: Low Field ¹ H NMR Investigations of Solvent Filled Multiwalled Carbon
	Nanotubes for Sensor and Battery Applications
	Symposium details: Solid State and Structural Chemistry Unit, Alumni
	Symposium 2019, Indian Institute of Science, Bangalore, 13 th December 2019.
41.	Title: Beyond Vanadium Redox Flow Battery: India Specific Solutions for Energy
	Storage
	Invited lecture details: Chemical Engineering seminar, Indian Institute of
	Technology Kanpur, 06 th November 2019
42.	Title: Tuning overpotential and electrolyte structure to realize high energy
	efficient redox flow battery
	Conference details: International Conference on Recent Trends in Chemistry of
	Materials (NCRTCM-2019), Bannari Amman Institute of Technology,
	Sathyamangalam, 12 th October 2019
43.	Title: Materials for Electrochemical Applications
	Faculty development program details: STC on 2D Materials, ICSR Hall 3, Indian
	Institute of Technology Madras, Chennai, 23 rd September 2019
44.	Title: Tuning overpotential and electrolyte structure to realize high energy
	efficient redox flow battery
	Conference details: Recent Advances in Materials Science for Sustainable
	Development-2019 (RAMSSD-2019), VFSTR (Deemed to University), 1st
	September 2019
45.	Title: Enhanced Electrochemical Sensing of Endohedral Carbon Nanotubes,
	Symposium details: Chemistry in-House Symposium (CiHs), Indian Institute of
	Technology Madras, Chennai, 21st August 2019
46.	Title: A New Process for Quick Fabrication of Dye-Sensitized Solar Cells
	Invited lecture details: SSN College, Kalavakkam, Chennai, 16th March 2019
47.	Title: Strategic Partnership with IIT Madras and Joint Workshop
	Indian Institute of Technology Madras, Chennai
	11-13 th July 2018
48.	Title: Modification of Graphite Felt Electrodes for Vanadium Redox Flow Battery
	Application
	Workshop details: Indo-German Joint Scientific Workshop on Membranes for
	Water and Energy, CSIR- Central Salt and Marine Chemicals Research Institute
	(CSMCRI), 18 th -20 th February 2019
49.	Title: Recent Developments in Redox Flow Battery Chemistry
	Conference details: Advanced Nanomaterials for Energy, Environment and
	Healthcare Applications (ANEH – 2019), Bishop Heber College, Trichy, 05 th
	February 2019
50.	Title: Stable Radical Ion Based Redox Flow Battery
	Seminar details: ChEMS Seminar, Chemical Engineering and Materials Science,
	Michigan State University, 15-16 th October 2018
51.	Title: Metal-air batteries
	Seminar details: HP Green R&D Centre, Bangalore, 9th March 2018
L	

52.	Title: Our Recent Experience with Redox Flow Batteries
	Invited lecture details: CSIR-CECRI (Council of Scientific & Industrial Research -
	Central Electrochemical Research Institute), Karaikudi, 20th September 2018
53.	Title: Organic Materials for Energy Science: DFT Guided Molecular Engineering
	Approach
	Materials Design and Energy Materials: Computational Approach
	Seminar details: SRM Institute of Science and Technology, Chennai, 5th February
	2018
54.	Title: Synthetic and Bio-derived Nanostructures for Selective Sensing of Biotinyl
	Targets
	Symposium details: Symposium on Materials in Chemistry & Biology, Indian
	Institute of Technology Gandhinagar, Gujarat, 5 th January 2018.
55.	Title: Metal Organic Framework and Organic Framework Built on Carbon
	Nanotubes by π - π
	Interaction for Electrochemical Applications
	Conference details: CEAMCR-2018, DAE Convention Centre, Anushaktinagar,
	Mumbai, 15-17 th February-2018
56.	Title: A Strategy of Enhancing the Surface Plasmon Assisted Light Harvesting in
	Dye Sensitized Solar Cells
	Conference details, National Convention of Electrochemist (NCE-19), National
	Institute of Technology – Trichy, 28 - 29th March 2016
57.	Title: Non-precious metal catalysts for fuel cell application
	Conference details: INDO-US ECM-2013, Banaras Hindu University, Varanasi,
	26 -28 th February 2013
58.	Title: Non-precious metal catalyst developed by freeze-dry method
	Conference details: Recent Advances in Electrochemical Energy Materials and
	Devices, Indian Institute of Science (IISc) Bangalore, 24-25th July 2012
<u> </u>	

ECS-IITM Student Chapter Mentoring for Outreach Activities

- As a faculty advisor of the ECS-IITM student chapter organized and conducted several outreach activities. They are listed below.
 - (i) ECS-IITM Student Chapter Inaugural Event and Workshop December 10, 2022.
 - (ii) A study tour was organized for student chapter members and IIT M.Sc students on December 30, 2022. Students visited the International Advanced Research Centre for Powder Metallurgy and New Materials at IITM Research Park to understand fuel cell making.
 - (iii) Conducted the fastest finger quiz competition alongside a three-day international conference on energy conversion and storage (IECS-2023) between January 18-20, 2023.

- (iv) ECS-IITM Student Chapter along with SRM University, conducted a twoday workshop on "Electrochemical Techniques for Next Generation Batteries" with hands-on activities on batteries and supercapacitors. Conducted quiz competition as part of the workshop.
- Organized eminent lecture series through the ECS-IITM student chapter. The first speaker of this series was Prof. Werner Paulus from the University of Montpellier, France, on April 19, 2023.
- (vi) Conducted a workshop on "Biosensors and Electroanalytical Techniques" on June 27, 2023, with Prof. Sadagopan Krishnan, Oklahoma State University, USA. Conducted hands-on finite/infinite diffusion experiments with impedance and rotating disk electrodes and electrochemical sensing of dopamine.
- (vii) Organized a lecture by Prof K Vidyasagar on "Structural correlations of nonmolecular solid-state energy materials" on September 5, 2023, as part of Teacher's Day celebrations
- (viii) Conducted an Indo-Korean workshop at Terrace Hall between September 20-21, 2023. Performed hands-on sessions with zinc-bromine battery, fuel cells, electrochemical impedance spectroscopy, rate constant calculations using Tafel slop, and the making of reference electrodes.
- (ix) A workshop on Electro Sustainability conducted on December 5, 2023, as part of the Energy Summit 2023 conference.
- (x) A workshop on "Symmetry Elements and Structure Solving" by Prof Werner Paulus, U. Montpellier between 12 to 16th Jan at IIT Madras
- (xi) Organized guest lecture on "Low-T oxygen diffusion questioning long-range oxygen, electronic and domain ordering in non-stoichiometric Transition Metal Oxides" through the ECS-IITM student chapter. The speaker of this series was Prof. Werner Paulus from the University of Montpellier, France, on January 17, 2024
- (xii) A Workshop on "Electrochemical Characterization of Batteries" conducted at NIT Trichy Campus on January 22nd and 23rd 2024.
- (xiii) A Symposium and workshop on "Batteries" conducted on 23rd and 24th February to felicitate Prof A K Shukla (IISc Bangalore) for his seminal contributions to the electrochemistry. The plenary speakers are Prof. Werner Weppner (University of Kiel, Editor of Ionics) and Prof. V Thangadurai (U. Calgary, Associate Editor of ACS Applied Materials & Interfaces and J. Materials Chem. A). Besides, many invited speakers from across the country graced the occasion.
- (xiv) A workshop on "Computational Electrochemistry- Fundamentals and applications" which highlights the basic principles and applications of DFT was conducted at IIT Madras on July 8th and 9th 2024.
- (xv) Two days workshop on "Prospectus for Li-ion batteries and Emerging Electrochemical Energy systems" was conducted in collaboration with PSG

	Institute of Advanced Studies, Coimbatore and Biologic Science Instruments		
	at PSG Institute of Advanced Studies, Coimbatore on July 29th and 30th 2024.		
(xvi)	Organized lectures by Prof. S. Sankararaman and Prof. Parasuraman Selvam		
	on September 5, 2024, as part of Teacher's Day celebrations.		
(xvii)	Two days workshop on powering the future: Innovations in Lithium-ion		
	Battery Technology was conducted in collaboration with Metrohm India Pvt		
	Ltd, at Centre for Research, Bannari Amman Institute of Technology,		
	Sathyamangalam, Tamil Nadu		
(xviii)	Three days hands-on training workshop on characterization of electrified		
	interfaces in batteries and supercapacitors, organized at Vellore Institute of		
	Technology, Tamil Nadu between November 13- 15 2024.		
(xix)	Two days interactive workshop on electrochemical technologies:		
	Emphasizing Batteries, Supercapacitors, and Fuel cells, organized at Vellore		
	Institute of Technology, Tamil Nadu between December 5- 6 2024.		
(xx)	Indo-Korea Workshop on Batteries and flow batteries, organized at IIT		
	Madras on January 30, 2025		
(xxi)	Two days workshop on Electrochemical Energy Systems: From		
	Fundamentals to Fabrication (A skill development Program) Battery		
	Technology was conducted in collaboration with Centre for Advanced		
	Materials Research Innovation and Technology, Department of Physics and		
	Electronics, CHRIST University, Bengaluru between March 7-8 2025.		

In association with the Electrochemical Society of India (ECSI), Bengaluru, a monthly webinar series was conducted online for the benefit of the students (details of the talks are given below).

S.No.	Name of the	Affiliation	Date of	Title of talk
	Speaker		webinar	
1.	Mr. Sanyam	Samsung SDI	20-08-2022	TiO ₂ Nanowires
	Pursi	America		application as anode
				materials and
				importance of artificial
				solid electrolyte
				interphase in Lithium-
				ion battery
2.	Dr.	Professor (Physical	01-10-2022	Beyond Lithium-ion
	Venkataraman	Chemistry), FRSC		Batteries
	Thangadurai	(UK), FIAAM,		
		FECS, University		
		of Calgary, Alberta,		
		Canada		
3.	Dr.	Assistant Professor,	29-10-2022	Charge transport at
	Veerabhadrarao	Department of		Electrode Molecule
	Kaliginedi	Inorganic and		interface

Dr. Tharamani C. N. Dr. S Senthil Kumar Dr. Siva Rama Krishna Chaitanya	Physical Chemistry (IPC), IISc Bangalore, India Associate Professor, Department of Chemistry, Indian Institute of Technology Ropar, Punjab, India Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor, Department of	26-11-2022 28-01-2023 06-02-2023	Advanced energy materials for energy conversion device An overview of CSIR of CSIR-NAL's solid oxide fuel cell/ electrolyzer technology Computing a Few
C. N. Dr. S Senthil Kumar Dr. Siva Rama Krishna Chaitanya	Associate Professor, Department of Chemistry, Indian Institute of Technology Ropar, Punjab, India Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor,	28-01-2023	materials for energy conversion device An overview of CSIR of CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
C. N. Dr. S Senthil Kumar Dr. Siva Rama Krishna Chaitanya	Professor, Department of Chemistry, Indian Institute of Technology Ropar, Punjab, India Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor,	28-01-2023	materials for energy conversion device An overview of CSIR of CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
Dr. S Senthil Kumar Dr. Siva Rama Krishna Chaitanya	Department of Chemistry, Indian Institute of Technology Ropar, Punjab, India Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor,		conversion device An overview of CSIR of CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
Kumar Dr. Siva Rama Krishna Chaitanya	Chemistry, Indian Institute of Technology Ropar, Punjab, India Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor,		An overview of CSIR of CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
Kumar Dr. Siva Rama Krishna Chaitanya	Institute of Technology Ropar, Punjab, India Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor,		CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
Kumar Dr. Siva Rama Krishna Chaitanya	Technology Ropar, Punjab, India Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor,		CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
Kumar Dr. Siva Rama Krishna Chaitanya	Punjab, India Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor,		CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
Kumar Dr. Siva Rama Krishna Chaitanya	Principal Scientist at National Aerospace Laboratories, Bangalore Assistant Professor,		CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
Kumar Dr. Siva Rama Krishna Chaitanya	at National Aerospace Laboratories, Bangalore Assistant Professor,		CSIR-NAL's solid oxide fuel cell/ electrolyzer technology
Dr. Siva Rama Krishna Chaitanya	Aerospace Laboratories, Bangalore Assistant Professor,	06-02-2023	fuel cell/ electrolyzer technology
Krishna Chaitanya	Laboratories, Bangalore Assistant Professor,	06-02-2023	technology
Krishna Chaitanya	Bangalore Assistant Professor,	06-02-2023	
Krishna Chaitanya	Assistant Professor,	06-02-2023	
Krishna Chaitanya	,	06-02-2023	Computing a Few
Chaitanya	Department of		
			Electrochemical
	Chemistry, Indian		Properties that can Help
Sharma	Institute of		us to Identify
Yamijala	Technology		Whether a 2D Material
	Madras, Chennai,		can be a Promising
	India		Anode Material or Not
Dr J N Balaraju	Chief Scientist &	29-04-2023	Nanocrystalline nickel
	Deputy Head,		alloy coatings for
	Surface		aerospace and
	Engineering		engineering applications
	Division		
S.	Senior Principal	27-05-2023	Electrochemical
Ravichandran	Scientist		Interfaces for Green
	CSIR-Central		Hydrogen Generation
	Electrochemical		
	Research Institute,		
	Karaikudi-630003,		
	India.		
Prof.	Professor,	22-07-2023	Electrochemical
Sadagopan	Oklahoma State		biosensors, fuel cells,
Krishnan	University, USA.		and Electrocatalysis
Dr. Satpal	Department of	28-10-2023	Electro-Organic
Singh Badsara	Chemistry,		Synthesis: Green and
	University of		Sustainable Approach
	Rajasthan, Jaipur,		for Forging New Bonds
	Rajasthan, India		
	S. Ravichandran Prof. Sadagopan Krishnan Dr. Satpal	JDeputy Head, SurfaceEngineering DivisionS.Senior PrincipalRavichandranScientistCSIR-Central ElectrochemicalResearch Institute, Karaikudi-630003, India.Prof.Professor,SadagopanOklahoma State University, USA.KrishnanDepartment of Singh BadsaraKajasthan, Jaipur,	JDeputy Head, SurfaceEngineering DivisionEngineering DivisionS.Senior Principal Scientist27-05-2023RavichandranScientist CSIR-Central Electrochemical Research Institute, Karaikudi-630003, India

11.	Dr.Balaji.P.Ma	Scientific Officer	23-12-2023	Sustainable Batteries;
	ndal	(G) & Assistant		Role of Chemistry
		Professor,		
		BARC, Mumbai,		
		India		
12.	Dr. Sunandan	Assistant Professor,	09-03-2024	Principles of
	Sarkar	Department of		Electrochemical Cells
		Chemistry, NIT		
		Tiruchirappalli.		
13.	Dr.Vinita	Scientific Officer	20-04-2024	Synthesis strategies of
	Grover Gupta	(H),Chemistry		materials.
		division, BARC,		
		Mumbai,		
		India		

Media Coverage of our Work

- https://tech-talk.iitm.ac.in/a-new-class-of-battery/
- <u>https://twitter.com/iitmadras/status/1631195298872840192?t=S36XIIWYi5nddJsp7n3AKw&s=08</u>
- https://www.thehindubusinessline.com/business-tech/iit-m-scientists-develop-improved-flow-battery-technology/article66847902.ece
- <u>https://www.thehindubusinessline.com/business-tech/ammonia-from-used-batteries/article36929429.ece</u>
- <u>https://www.thehindubusinessline.com/business-tech/putting-rooftop-solar-to-many-good-uses/article64577772.ece</u>
- https://www.pressreader.com/india/the-hindu-business-line/20220425/281956021344451
- <u>https://www.iastoppers.com/articles/can-flow-batteries-support-india-s-renewable-energy-pivot</u>
- <u>https://techindiaexpress.in/can-flow-batteries-support-indias-renewable-energy-pivot/</u>

Technology Contribution

• Developed 10kWh/1.4 kW Vanadium Redox Flow Battery Energy Storage System, which is under field trial at High Energy Batteries (I) Ltd. Trichy. The technology is transferred to ONGC.

 Catholyte (DABr₃.HBr with AQDS Anode) Material for Aqueous Acidic Flow Battery, Indian Patent Application No. :202241042107. Kothandaraman R and Vivekandanda M

Above IP licensed toArchean Chemical Industries Limited for 50 Lakhs + 2% Royalty.Technologytransferceremonycanbeviewedat:https://twitter.com/iitmadras/status/1631195298872840192?t=S36XIIWYi5nddJsp7n3AKw&s=08

- Jointly Developing 10kWh Indigeneous Zinc-Bromine Redox Flow Battery with Archean Chemical Industries Limited.
- Our Technology for Repurposing Waste Battery Materials into Battery Electrodes Won Third Prize in New Generation Ideation Contest 2022 Conducted by Hindustan Petroleum Corporation Limited.

A photograph of 1.4kW/10kWh system developed with industrial partner for ONGC-Energy Trust Centre.

Standalone 5kW/10kWh flow battery stack (Developed with ONGC funding with industry partner High Energy Batteries I Ltd.) charging two wheeler show cased in Indi Energy Week held in Goa between 6th-9th February 2024

S.N o.	Title of the Project/ Agency	Amount (Rs. In lakhs)	Scholar Name	Start date	Duration
1.	Women Leading IITM 2024 / IITM	2.1	Ms.Sravani Potham	April 2024 to September 2024	6 months
2.	Women Leading IITM 2024 / IITM	2.1	Mrs. Priya.V	April 2024 to September 2024	6 months
3.	Women Leading IITM 2024 /IITM	1.05	Ms. Richa Gupta	April 2024 to June 2024	3 months
4.	Rational Design and Development of Large- Area Perovskite Solar Cells / (SERB-TARE Fellowship)	10.05	Dr. G Murugadoss	14-10-2022	3 Years (ongoin g)
5.	Borophene: A novel two- dimensional graphene-like material for future energy storage applications / (SERB-NPDF)	22.37	Dr. Anandhakumar Sukeri	01-03-2022	2 years
6.	Women Leading Innovation 2022 / IITM	2.1	Dr. Sumana B	01-03-2022	2 years
7.	Light induced process of Hierarchical electron cascade system, Materials and Devices for Solar energy conversion / (Teachers Associateship For Research Excellence- TARE)	10.05	Dr. M. Asha Jhonsi	14-11-2018	3 Years

8.	Enhanced photovoltaic performances of dye- sensitized solar cells sensitized with triphenylamine/phenothiaz ine- oxindole/dithienobenzotriz ole based dyes / SERB- NPDF	17.02	Dr. Selvam (NPDF)	21-06-2017	2 Years
9.	Permselective membrane and polymer/garnet electrolyte for Li-S batteries / SERB-NPDF	19.2	Dr. M. Raja	21-09-2017	2 Years
10	Electroorganic Modifications of Graphene into Redox-mediator-cum- Substrate to Immobilize Glucose Oxidase/Cholesterol Oxidase for Bio-sensor Applications / SERB- NPDF	19.2	Dr. P. Gayathri	08-06-2016	2 Years

Where	Vhereabouts of PhD Students Graduated				
S. No	Name of the scholar	Title of the thesis	Current affiliation	Year of graduation	
1	Dr. M. P	Metal-nitrogen-carbon	Chemist (Group B	2016	
	Karthikayini	(MNC) based non-precious	Gazetted Officer),		
		metal catalysts for	Department of		
		electrochemical reduction	Industries and		
		of oxygen in fuel cells	Commerce,		
			Government of		
			Tamilnadu, Guindy,		
			Chennai		
2	Dr. Anjaiah	Metal-organic complexes	Postdoctoral fellow,	2017	
	Sheelam	and carbon materials	Center for Condensed		
		derived from metal-organic	Matter Sciences,		
		complexes for oxygen	Department of Physics,		
		reduction reaction in	National Taiwan		
		alkaline medium	University, Taiwan		

3	Dr. T. Thirupathi	Cobalt and nitrogen dopedcarbonmaterialsforrechargeablezinc-airbatteryandcarbon	Manager, Renewable energy systems limited, Hyderabad	2017
		supported g-C ₃ N ₄ for hydrazine sensor applications		
4	Dr. M. Veerababu (Co-guided)	Studies on certain aromatic diimides and conjugated carboxylates as electrode materials for secondary lithium/sodium-ion battery applications	Scientist of Energy Technology Division, Godi India Pvt. Ltd, Hyderabad	2017
5	Dr. Rakesh Verma (Co-guided)	Ternary Transition Metal Oxides and Sulphides as New Anode Materials for Rechargeable Alkali Metal Ion (Lithium and Sodium) Battery Applications	Assistant Professor, Central University of Allahabad- Uttar Pradesh 211002	2017
6	Dr. P Vasudevarao	Studiesonnewelectroactivefluidsandcatalystsforredoxflowbatteriesandmembranelessfuel cells	Manager, R&D Li-ion Battery Technology, Amara Raja Batteries Limited, Hyderabad, Telangana	2018
7	Dr. Sudip Mandal	Molecular Engineering for Dye-Sensitized Solar Cells and Chemosensors: An Experimental and Computational Approach	Assistant Professor (Senior Level) , Division of Chemistry, Department of Sciences and Humanities, Vignan's Foundation for Science, Technology and Research (Deemed to be University), Guntur, Andhra Pradesh	2019
8	Dr.Divya Unny	Carbazole, phenothiazine and triphenylamine based organic dyes with different push-pull architecture for dye-sensitized solar cells	-	2022
9	Dr.Ramavath Janraj Naik	Boosting the energy density of aqueous supercapacitor	Assistant Professor ,Sri Venkateswara	

		through the multitude of	College, Delhi	2022
		approaches and development of eco-benign membrane/binder materials	University	
10	Dr.Tamil Selvi	Electrochemical sensors	Postdoctoral scholar at	2022
10	G.	and electrocatalytic	The University of	2022
	0.	production of ammonia.	Texas at Austin, USA	
11	Dr.M. R.	Tweaking the redox-active	Postdoc (AvH Fellow)	2022
	Chinmaya	organic material properties	at Ulm University,	
		and electrode engineering	Germany	
		for rechargeable battery		
		applications		
12	Dr.Yashwant	Nickel and Copper-based	Postdoc at IIT Bombay	2022
	Pratap Kharwar	electrocatalysts and		
		nitrogen-doped carbon		
		support for platinum		
		nanoparticles for the oxygen		
		reduction reaction in the		
		energy conversion systems		
13	Dr.Sumana B	Activated carbon-based	Postdoc at Brunel	2022
		electrode materials with	University London	
		iodine/iodide redox-active		
		ionic liquid and solid-state		
		electrolyte for the		
		supercapacitor applications		
14	Dr.Dipsikha	Development of electrode	Volt14 Solutions,	2023
	Ganguly	materials and technique for	Singapore	
		efficient energy storage and		
		conversion devices		
15	Dr.Vivekananda	Electrode Engineering for	Postdoctoral scholar,	2023
	Mahanta	Vanadium and Exploring	ULB Brussels	
		Endurance of Alternative		
		Redox-Active Materials for		
		Aqueous Acidic Redox		
		Flow Battery		
16	Dr. Kandregula	Studies on light sensitive	Assistant manager at	2023
	Ganapathi Rao	devices and aqueous	Amararaja batteries	
4-		asymmetric supercapacitors		
17	Dr. Harun Khan	Vanadium and Organic	Head of energy	2024
		redox flow batteries	storage and battery	
			research- ARKLE	
			Energy Solutions	
			Lifergy solutions	

18	Dr. Priya V	Zn-ion batteries and organic	Assistant Professor at	2024
		redox flow batteries	University of Calicut	
19	Dr . Sravani	Supercapacitors	Associate Scientist at	2024
	Potham		GODI India Pvt Ltd.	
20	Dr. Richa Gupta	Zn-ion batteries	-	2024
21	Dr. Sandeep	Organic redox flow	Research Associate,	2025
	Mohapatra	batteries	IIT Madras	

S. No.	Roll No./Name	Tentative title/ Area of research	Status	Expected Year of Completion
1	CY18D026/ Nivedha L. K.	Zinc-Air batteries	6 th Year	2025
2	CY20D045/ Mohana Priya	Li-ion batteries	5 th Year	2025
3	CY20D049/Swati Panigrahi	Li-ion batteries and electrochemical reduction of nitrogen	5 th Year	2025
4	CH20D021/Anoop N	Electrochemical CO ₂ reduction	4 th Year	2025
5	CY21D048/ Nikhil G Mohan	Electrochemical reduction of nitrogen and theoretical work	4 th Year	2026
6	CY21D074/ Abhilipsa Sahoo	Aqueous organic redox flow batteries	4 th Year	2026
7	Megha Bala/ CY22D053	Lead flow batteries	3 rd Year	2027
8	Rubi/ CY22D013	Zn-Iodine flow batteries	3 rd Year	2027
9	Santhoshini/CY23D038	Na-ion batteries	2 nd Year	2028
10	Mathru Naik/CY23D099	Li ion batteries	1 st Year	2029

11	Sripadha	Electrochemical	1 st Year	2029
	Shekhar/CY24D060	reduction of nitrogen		
12	Manavi/CY24D061	Zn-ion batteries	1 st Year	2029
13	Vansh Butani/CY24D062	Na- ion batteries	1 st Year	2029
14	Shakthi/CY24D059	Li ion batteries	1 st Year	2029
15	Aneena simon/CY24D058	Redox flow batteries	1 st Year	2029
16	Joel Baskar/CY24D065	Li ion batteries	1 st Year	2029
17	Sandeep Kumar/ CY24D021	Li-S batteries	1 st Year	2029
18	Sundaravalli / CY24D106	Flow Batteries	1 st Year	2029

Name / Roll. No.	Achievement
Dr. Priya V	Institute Research Award – 2023 (it carries a cash prize of Rs
	20,000 and a citation from IIT Madras) for her outstanding PhD work
Dr Vivekananda Mahanta	Best Thesis Award 2023 - Langmuir Prize
Dr. Kandregula Ganapathi Rao	Institute Research Award – 2022 (it carries a cash prize of Rs 20,000 and a citation from IIT Madras) for his outstanding PhD work
	Professor Ramamurthy Award for the best Ph.D. Thesis in Chemistry for the academic year 2023 – 2024
Dr. Dipsikha Ganguly	Keshav Rangnath Excellence in Research Award (it carries a cash prize of Rs 20,000 and a citation from IIT Madras) for her outstanding PhD work
Dr. Chinmay Mirle	Presented a oral presentation on invitation in Junior National Organic Chemistry Symposium (JNOST-22), School of Chemistry, University of Hyderabad, held between Jan 06-09, 2022 Best Ph.D thesis award in 2022

Dr. Sumana Brahma	Young Scientist award in the 40 th Annual Conference Indian Council of Chemists, Hyderabad (Dec 2021)
Dr. Tamil Selvi G.	 DST Selected her to attend 13th HOPE Meeting (Meeting of Nobel Laureates) organized by the Japan Society for the Promotion of Science in March 2022 for her outstanding research work. She is one among 9 chosen for this honour. Young researchers selected from various countries to engage in interdisciplinary discussions with Nobel laureates and other distinguished scientists. Institute Research Award - 2020 Society of Materials Chemistry (BARC) Emerging Scientist Award-2024
Dr. Jagadeeswari S	 SERB-NPDF poster competition award -2020 by DST- SERB Best young women award by Genesis of Educational Impressions -2021
Ms. Vanshika Jain	Best M.Sc thesis award in 2018