Oxidative Functionalization of Metallated β -Diketiminate Analogues

G. K. Lahiri

Department of Chemistry, IIT-Bombay, Mumbai-400076, India Email: lahiri@chem.iitb.ac.in

Metal complexes of β -diketiminate analogues have gained profound recent attention by virtue of its multifarious reactivity strategy, functionalization of small molecules, catalytic activity amongst many others.¹ In this regard, our recent approach (experimental and theoretical) revealed C-H and C-C bond functionalizations of analogous β -diketiminate as a function of varying metal platform and substrate backbone.² This includes-

- Aerobic oxygenation and acylation at central methine carbon of β -diketiminate and β -ketoiminate on selective electron rich {Ru(acac)₂} (acac=acetylacetonate) platform.
- Impact of ancillary ligands (σ -donating acetylacetonate to moderately π -accepting bipyridine to strongly π -accepting phenylazopyridine) as well as ligand backbone on the oxygenation process.
- Influence of redox non-innocence of β -diketiminate on the rate of oxygenation.
- Redox-active metal (Ru) versus redox-inactive metal (Zn).

References:

- a) X. Dai, P. Kapoor, T.H. Warren, J. Am. Chem. Soc., 2004, 126, 4798; b) C. J. Cramer, W.B. Tolman, Acc. Chem. Res. 2007, 40, 601; c) D.J.E. Spencer, N.W. Aboelella, A.M. Reynolds, P.L. Holland, W.B. Tolman, J. Am. Chem. Soc., 2002, 124, 2108; d) C. Camp, J. Arnold, Dalton Trans., 2016, 45, 14462.
- 2. a) S. Panda, A. Mandal, P. Ghosh and G.K. Lahiri, *Inorg. Chem.*, **2017**, *56*, 14900; b) S.K. Bera, S. Panda, S.D. Baksi and G.K. Lahiri, *Dalton Trans.*, **2018**, *47*, 15897; c) R. Ray, S. Chandra, V. Yadav, P. Mondal, D. Maiti, G.K. Lahiri. *Chem. Commun.*, **2017**, *53*, 4006 and unpublished results.